金红叶纸业(南通)有限公司 APP 如东基地年产 78 万吨高档生活 用纸项目(第三阶段)竣工环境保护 验收监测报告

建设单位: 金红叶纸业(南通)有限公司

编制单位: 金红叶纸业(南通)有限公司

建设单位法定代表人: 黄志源(签字)

编制单位法定代表人: 黄志源(签字)

项目负责人: 乾宽

填 表 人: 何文、郭首玉、王九洲、王军

司(盖章)

电话: 0513-81998808

传真: /

邮编: 226407

地址: 江苏如东洋口港经济开发区临港

工业园区

建设单位:金红叶纸业(南通)有限公编制单位:金红叶纸业(南通)有限公

司(盖章)

电话: 0513-81998808

传真: /

邮编: 226407

地址: 江苏如东洋口港经济开发区临港工

业园区

目 录

1	项目概况	1
2	验收依据	3
2.1	建设项目环境保护相关法律、法规和规章制度	3
2.2	建设项目竣工环境保护验收技术规范	3
2.3	建设项目环境影响报告书及其审批部门审批决定	4
2.4	其他相关文件	4
3	项目建设情况	6
3.1	地理位置及平面布置	6
3.2	建设内容	14
3.3	主要原辅材料及燃料	25
3.4	水源及水平衡	26
3.5	生产工艺	28
3.6	项目变动情况	31
4	环境保护设施	41
4.1	污染物治理/处置设施	41
4.1.	.1 废水	41
4.1.	.2 废气	45
4.1.	3 噪声	51
4.1.	4 固(液)体废物	51
4.2	其它环保设施	56
4.2.	.1 环境风险防范设施	56
4.2.	2 规范化排污口	57
4.3	环保设施投资及"三同时"落实情况	62
5	环境影响报告书主要结论与建议及其审批部门审批决定	64
5.1	环境影响报告书主要结论与建议	64
5.2	审批部门审批决定	65
5.3	环评批复落实情况对照	68
6	验收执行标准	71
6.1	废气排放执行标准	71
6.2	废水排放执行标准	72
6.3	噪声排放执行标准	73
6.4	固体废物	73

6.5	总量控制指标	73
7 [验收监测内容	75
7.1	环境保护设施调试运行效果	75
7.1. 1	l 废水	75
7.1.2	2 废气	77
7.1.3	3 厂界噪声监测	82
8 <u>)</u>	质量保证和质量控制	84
8.1	监测分析方法	84
8.2	监测仪器	85
8.3	人员能力	85
8.4	水质监测分析过程中的质量保证和质量控制	86
8.5	气体监测分析过程中的质量保证和质量控制	88
8.6	噪声监测分析过程中的质量保证和质量控制	88
9 [验收监测结果	89
9.1	生产工况	89
9.2	环保设施调试运行效果	90
9.2. 1	I 环保设施处理效率监测结果	90
9.3	亏染物排放监测结果	92
9.3. 1	l 废水	92
9.3.2	2 废气	98
9.3.3	3 厂界噪声1	04
9.4 ¥	亏染物排放总量核算1	106
10	验收监测结论1	08
10.1	环保设施调试运行效果1	08
	.1 环保设施处理效率监测结果1	
10.1	.2 污染物排放监测结果1	09
11	建设项目工程竣工环境保护"三同时"验收登记表1	111

1项目概况

金红叶纸业(南通)有限公司为金红叶纸业集团所投资创立,创建于2017年,位于江苏如东洋口港经济开发区临港工业园区,公司主要从事生活用纸生产。金红叶纸业(南通)有限公司计划总投资956413万元人民币,购置造纸机、水力碎浆机、磨浆机等设备,建设APP如东基地年产78万吨高档生活用纸项目,该项目环境影响报告书于2019年6月27日通过如东县行政审批局的审批(东行审环[2019]70号),环评审批全厂共有13条造纸生产线和2条湿纸巾生产线,具有年产78万吨/年高档生活用纸的生产能力,其中成品原纸24万吨/年,后加工纸生产能力54万吨/年,同时具有年产4.734万吨湿纸巾的生产能力。

根据企业远期发展规划,湿纸巾项目不再建设。因项目施工进度以及企业建设计划的调整,APP如东基地年产78万吨高档生活用纸项目分阶段建设,其中第一阶段建设有8条3万吨造纸生产线,具有年产24万吨生活用纸的能力。第二阶段建设有4条3万吨造纸生产线,具有年产12万吨/年生活用纸的能力。项目第一阶段、第二阶段分别于2022年8月3日、2022年12月19日通过了项目竣工环境保护自主验收(验收意见详见附件5、附件6)。

本次为项目第三阶段验收,共建成10条3万吨造纸生产线、2条6万吨造纸生产线,具有年产42万吨生活用纸的生产能力。项目第三阶段于2019年7月开工建设,2023年9月建设完成并进行调试。项目第三阶段建成后全厂共建设24条造纸生产线,全厂具有年产78万吨高档生活用纸的生产能力,其中成品原纸12万吨/年,后加工纸生产能力66万吨/年。项目生活用纸后加工复卷工序仍在建设中,相关的设备未购置齐全,该工序作为项目第四阶段验收内容,不在本次验收范围内。

公司已于2021年9月30日取得排污许可证,并于2023年6月21日进

行了排污许可重新申请(证书编号: 91320623MA1UTBDD3H001P, 详见附件4),重新申请后的排污许可包含本次验收内容,设备、工 艺、污染防治设施均与排污许可证一致。

本项目第三阶段建成后全厂职工2555人,提供食宿,年工作340 天,三班制,每班8小时,全年工作时间8160小时。

根据相关文件的要求,公司于2023年10月对该项目验收内容中废气、废水、噪声、固体废弃物等污染源排放现状和各类环保治理设施的处理能力进行了现场勘查,在详细检查及收集查阅有关资料的基础上,于2023年10月编制了竣工验收监测方案,并委托江苏添蓝检测技术服务有限公司于2023年11月1日-30日对项目第三阶段进行了三同时验收监测,根据监测结果和现场核查情况,于2024年8月编制了本验收监测报告。

2验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- (1)《中华人民共和国环境保护法》(2015年1月1日起施行);
- (2)《建设项目环境保护管理条例》(2017年7月16日);
- (3)《江苏省排污口设置及规范化整治管理办法》(苏环控[1997]122 号);
 - (4)《中华人民共和国水污染防治法》(2018年1月1日施行);
 - (5)《中华人民共和国大气污染防治法》(2018年10月26日施行);
- (6)《中华人民共和国噪声污染防治法》(中华人民共和国主席令第104号);
 - (7)《江苏省固体废物污染环境防治条例》(2018修订);
 - (8) 《中华人民共和国固体废物污染环境防治法》(2020年修订)。

2.2 建设项目竣工环境保护验收技术规范

- (1)《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号, 2017年11月22日);
- (2)《关于建设项目竣工环境保护验收有关事项的通知》(江苏省环境保护厅,苏环办[2018]34号,2018年1月26日):
- (3)《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》(苏环办[2021]122号);
- (4)《关于加强建设项目竣工环境保护验收监测工作的通知》(江苏省环境保护厅,苏环监[2006]2号,2006.2.20);
- (5)《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》 (环办[2015]113号);
- (6)《建设项目竣工环境保护验收技术指南 污染影响类》(公告2018年 第9号,生态环境部公告,2018年5月15日);
 - (7) 《关于印发污染影响类建设项目重大变动清单(试行)的通知》

(苏办环评函[2020]688号);

- (8)《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020);
- (9) 《危险废物贮存污染控制标准》(GB18597-2023);
- (10)《省生态环境厅关于印发<江苏省固体废物全过程环境监管工作意见>的通知》(苏环办[2024]16号);
- (11)《建设项目竣工环境保护设施验收技术规范 造纸工业》(HJ408-2021):
- (12)《制浆造纸建设项目重大变动清单(试行)》(环办环评〔2018〕6 号)。

2.3 建设项目环境影响报告书及其审批部门审批决定

- (1)《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书》(江苏环保产业技术研究院股份有限公司,2019年6月);
- (2)《关于金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书的批复》(东行审环[2019]70号,如东县行政审批局,2019年6月27日)。

2.4 其他相关文件

- (1)《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目(第一阶段)竣工环境保护收报告》(金红叶纸业(南通)有限公司,2022年8月);
- (2)《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目(第二阶段)竣工环境保护收报告》(金红叶纸业(南通)有限公司,2022年12月);
- (3)《关于金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书(报批稿)中废水二噁英排放总量重新核定的说明》(江苏环保产业技术研究院股份有限公司,2024年5月16日);

(4) 金红叶纸业(南通)有限公司提供的其它相关资料。

3项目建设情况

3.1 地理位置及平面布置

(1) 项目地理位置及周边环境

金红叶纸业(南通)有限公司位于江苏如东洋口港经济开发区临港工业园区,分为生产区域和污水处理站区域(生产区域中心经度120°21'25.9635"中心纬度32°24'50.4087",污水处理站中心经度120°21'55.2403"中心纬度32°25'9.7978")。项目生产区域东侧为经七河,往东为东堤路;南侧为S211,路南侧为掘坎河;西侧为经十路,往西为空地;北侧为中心路。项目污水处理站区域东侧为经七河,往东为东堤路;南侧为中心路。项目污水处理站区域东侧为经七河,往东为东堤路;南侧为中心路;西侧为空地;北侧为金光能源(南通)有限公司。

本项目需设置以1#造纸车间~7#造纸车间边界设置50米卫生防护距离,以污水处理站边界设置100米卫生防护距离。根据现场踏勘,结合厂区平面布置,本项目卫生防护距离内不存在居民等敏感目标,符合卫生防护距离设置要求,具体地理位置图见3.1-1、项目厂区周边概况见图3.1-3。

本项目周边主要大气环境保护目标见下表。

环境 环境风险受体 方位 距离(m) 规模(人) 环境功能 滨海村 《环境空气质量 SE 1160 746 大气环 黄海村 2200 422 标准》(GB3095-S 境 2012)二级标准 富盐村 SSE 500 1754 经七河 紧邻 小型 Ε 《地表水环境质 紧邻 掘坎河 S 小型 量标准》 水环境 中心河 N 紧邻 小型 (GB3838-2002) 北横河 小型 Ⅲ类标准 N 690 《声环境质量标 准》(GB3096-声环境 / / / / 2008)中3类标准 如东农渔业区 WNW 3500 海洋环 《海水水质标 境(黄 准》(GB3097-开发区附近海域 / / /

表3.1-1 项目周边环境保护目标一览表

海)	开发区污水厂排污 口所在海域	NE	12000	/	1997) 二类标准
	如东县沿海生态公 益林	S	2km	二级管控区 19.85km ²	海岸带防护
生态	如东沿海重要湿地	NW	6.6km	二级管控区 122.49km ²	湿地生态系统保护
土心	如东大竹蛏和西施 舌省级水产种植资 源保护区	NNE	18.5km	一级管控区 13.86km²;二 级管控区 18.66km²	渔业资源保护

图 3.1-1 项目地理位置图

(2) 项目平面布置

本项目第三阶段3#、5#、6#、7#联合厂房由南向北依次为碎浆车间、造纸车间、后加工车间、立体仓库,主要设备为造纸机、水力碎浆机、损纸碎浆机、磨浆机等,主要声源集中在碎浆车间、造纸车间,造纸卷取废气的处理设施及排气筒均设置在造纸车间。污水处理站的主入口位于南侧,由南到北依次为给水泵房、清水池、预留用地、初期雨水池、调节池及斜网间、应急池、前混凝池、初沉池、A/O池、二沉池、后混凝池、三沉池及污泥浓缩池、滤布滤池用房、放流池及脱水机房。

本次验收为APP如东基地年产78万吨高档生活用纸项目第三阶段验收,主要验收内容为3#、5#、6#、7#联合厂房内12条造纸生产线及配套的辅助设施,第三阶段生产废水依托现有污水处理站处理后排放。

项目平面布置见图3.1-2,周边情况图见图3.1-3。

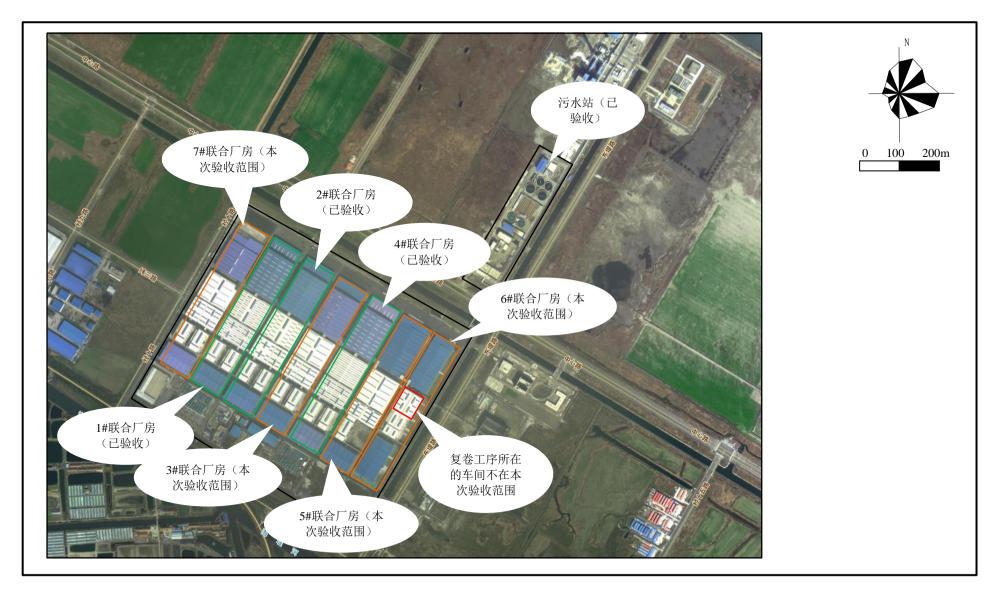


图 3.1-2 项目厂区平面布置图

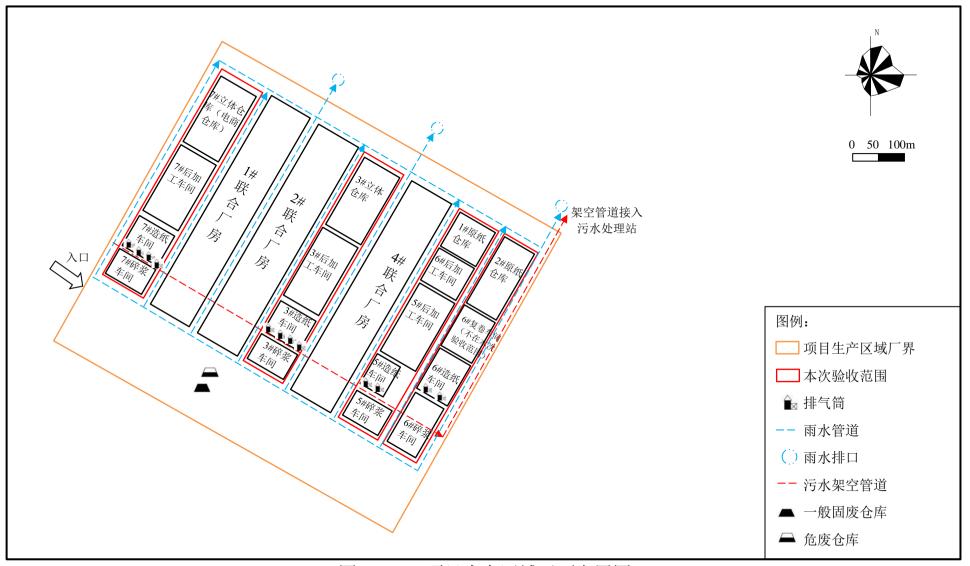


图 3.1-2-1 项目生产区域平面布置图

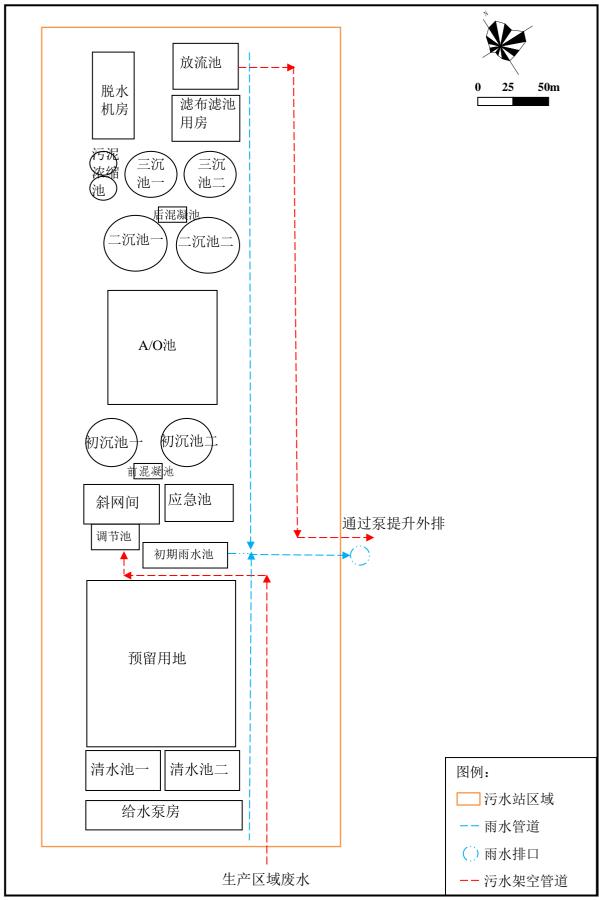


图3.1-2-2 项目污水处理站平面布置图

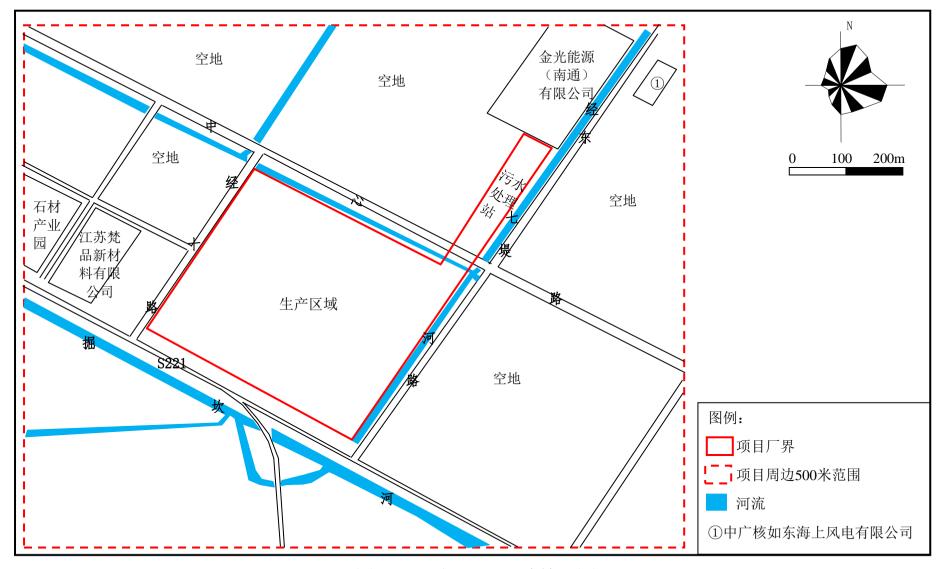


图 3.1-3 项目厂区周边情况图

3.2 建设内容

本项目环评审批共13条造纸生产线和2条湿巾生产线,具有年产78万吨 /年高档生活用纸的生产能力,其中成品原纸生活原纸24万吨/年,后加工纸 生产能力54万吨/年(后加工纸生产包括卷筒卫生纸、软抽纸、盒抽纸、厨 房用纸等品种),同时具有年产4.734万吨湿纸巾的生产能力。因项目施工 进度以及公司建设计划的调整,APP如东基地年产78万吨高档生活用纸项 目分阶段建设,其中第一阶段(8条造纸生产线,年产24万吨/年生活用 纸)、第二阶段(4条造纸生产线,年产12万吨/年生活用纸)分别于2022 年8月3日、2022年12月19日通过了项目竣工环境保护自主验收。本次验收 对APP如东基地年产78万吨高档生活用纸项目(第三阶段)进行验收,共 12条造纸生产线,具有年产42万吨生活用纸的生产能力。项目第三阶段建 成后全厂具有年产78万吨高档生活用纸的生产能力,其中成品原纸12万吨/ 年,后加工纸生产能力66万吨/年。项目生活用纸后加工复卷工序仍在建设 中,相关的设备未购置齐全,该工序作为项目第四阶段验收内容,不在本 次验收范围内

本项目工程建设情况见表3.2-1, 主体工程及产品方案建设情况见表3.2-2, 主要构筑物建设情况见表3.2-3,公用及辅助工程建设情况见表3.2-4,项目主 要设备见表3.2-5。

序号 项目 执行情况 立项或备案 1 东行审投[2018]407号 2019年由江苏环保产业技术研究院股份公司编制完成环评 环评 2 环评批复 2019年6月27日通过如东县行政审批局审批,东行审环[2019]70号。 3 2022年8月3日通过了项目第一阶段竣工环境保护自主验收,具有年 第一阶段验收 | 产24万吨/年高档生活用纸的生产能力,其中后加工纸生产能力24万 4 吨/年。 2022年12月19日通过了项目第二阶段竣工环境保护自主验收,具有 第二阶段验收 年产12万吨/年高档生活用纸的生产能力,其中后加工纸生产能力12 5 万吨/年。 本次验收建设规建设12条造纸生产线,其中3#、7#联合厂房各建设4条3万吨/年造纸 6 生产线、5#联合厂房建设2条3万吨/年造纸生产线、6#联合厂房建设 模

表3.2-1 工程建设情况一览表

		2条6万吨/年造纸生产线,合计10条3万吨/年造纸生产线、2条6万吨/年造纸生产线,具有年产42万吨高档生活用纸的能力,其中成品原纸生产能力12万吨/年、后加工纸生产能力30万吨/年。
7	本验收项目破土 动工及建成时间	
8	总投资	环评总投资956413万元,第一阶段实际总投资104278万元,第二阶段实际总投资50000万元,第三阶段实际总投资800000万元,其中实际环保投资8280万元。
9	现场踏勘工程实 际建设情况	废气、废水、噪声、固废治理设施按照环评要求建设。

表3.2-2 主体工程及产品方案建设情况表

			<u> </u>	, , , , , , , , , , , , , , , , , , , ,	=			
序号	工程名称 (车间、 生产装置 或生产 线)	产品名称及 规格	全厂环评批复生产 能力	第一、第二阶 段已验收生产 能力	第三阶段环评 批复生产能力	第三阶段实际 生产能力	全厂实际生产能 力	年运行 时数
1	1#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	12万吨/年(4条 产能为3万吨造 纸生产线、不 含复卷工序)	/	/	/	
2	2#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	12万吨/年(4条 产能为3万吨造 纸生产线、不 含复卷工序)	/	/	/	
3	4#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	12万吨/年(4条 产能为3万吨造 纸生产线、不 含复卷工序)	/	/	/	340d×24 h=8160h
4	3#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	/	12万吨/年(2条 产能为6万吨造 纸生产线)	12万吨/年(4条 产能为3万吨造 纸生产线、不 含复卷工序)	/	11=810011
5	5#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	/	12万吨/年(2条 产能为6万吨造 纸生产线)	6万吨/年(2条 产能为3万吨造 纸生产线、不 含复卷工序)	/	
6	6#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	12万吨/年(2条产能 为6万吨造纸生产 线)	/	12万吨/年(2条 产能为6万吨造 纸生产线)	12万吨/年(2条 产能为6万吨造 纸生产线、不 含复卷工序)	/	

7	7#联合造 纸厂房	高档生活用 纸 10.5~45g/m²	6万吨/年(1条产能 为6万吨造纸生产 线)	/	6万吨/年(1条 产能为6万吨造 纸生产线)	12万吨/年(4条 产能为3万吨造 纸生产线、不 含复卷工序)	/	
/	小计	/	生活用纸78万吨/年 (24万吨成品原 纸、54万吨后加工 纸)	生活用纸36万 吨(36万吨后 加工纸)	生活用纸42万吨(24万吨成品原纸、18万吨后加工纸)	生活用纸42万 吨(12万吨成 品原纸、30万 吨后加工纸、 不含复卷工 序)	生活用纸78万吨/ 年(12万吨成品 原纸、66万吨后 加工纸、不含复 卷工序)	

注:原环评项目第三阶段共有7条产能为6万吨造纸生产线,净纸幅宽为5600mm。实际建设过程中造纸机净纸幅宽共3个型号,分别为5600mm、3600mm、2800mm,最大设计车速相较于环评也有所减少。为确保项目第三阶段产能能够达到环评审批产能,项目第三阶段实际建设过程中共建设10条3万吨、2条6万吨的造纸生产线,变动前后项目第三阶段产能不发生变化(产能核算详见表3.2-3)。

项目原环评审批第三阶段具有年产42万吨/年高档生活用纸的生产能力,其中成品原纸24万吨/年,后加工纸生产能力18万吨/年。实际生产过程中具有年产42万吨/年高档生活用纸的生产能力,其成品原纸产能减少至12万吨/年,后加工纸产能增加至30万吨/年,后加工纸生产工艺主要为压花、打孔、分切、封口等,无废气、废水产生,故后加工纸产能变动后不会导致新增污染物种类,不会导致污染物排放量增加,不属于重大变动。

表3.2-3 产能核算表

					原环	评产品产	能				实际产品产能								
序 号	工程名称	产品名称及	造纸 机数	幅宽	最大设	单台 造纸	年运行	23: H	申报产	左能	产品名称及	造纸机	幅宽	最大设	单台造 纸机产	年运行	单条造纸 生产线最	实际产	左能
		规格	量	阳见	计车速	机产 能	时间	线取入 设计产 能	单条生 产线	合计	规格	数量	畑 见	计车速	能	时间	大设计产 能	单条生 产线	合计
1	1#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a		生活用纸 11.5g/m²	4台	3600mm	1600m/ min	3.97t/h	8160h	3.24万t/a	3万t/a	
2	2#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a		生活用纸 11.5g/m²	4台	3600mm	1600m/ min	3.97t/h	8160h	3.24万t/a	3万t/a	
3	4#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a	78万 t/a	生活用纸 11.5g/m ²	4台	3600mm	1600m/ min	3.97t/h	8160h	3.24万t/a	3万t/a	78万 t/a
4	3#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a		生活用纸 11.5g/m ²	4台	3600mm	1600m/ min	3.97t/h	8160h	3.24万t/a	3万t/a	
5	5#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a		生活用纸 42g/m²	2台	2800mm	900m/ min	6.35t/h	8160h	5.18万t/a	3万t/a	

6	6#联合造 纸厂房	生活用纸 10.5~45g/m²	2台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a	生活用纸 13g/m²	2台	5600mm	1800m/ min	7.86t/h	8160h	6.41万t/a	6万吨	
7	7#联合造 纸厂房	生活用纸 10.5~45g/m²	1台	5600 mm	2000m/ min	8t/h	8160h	6.52万 t/a	6万t/a	生活用纸 11.5g/m²	4台	3600mm	1600m/ min	3.97t/h	8160h	3.24万t/a	3万t/a	

通过对实际造纸生产线的幅宽、最大车速、运行时间的调查,计算得到项目第三阶段实际产能为42万吨/年,项目建成后全厂实际产能为78万吨/年,均与环评申报产能一致。故造纸生产线增加后,并未导致产能变化。

表 3.2-4 验收项目主要构筑物建设情况表

序	1 /:	1.555 Hm 57 Fb	原环	评中主要 情况	构筑建设	项目第	第三阶段实际	定建设情况	亦仏桂四
号	Υ'-]筑物名称	层数	占地面 积m²	建筑面 积m²	层数	占地面积 m ²	建筑面 积m²	变化情况
		碎浆车间	1F	5400	5400	1F	8977.25	8998.5	
1	3#联 合厂	造纸车间	2F	12800	25600	3F	9685.55	22791.05	
1	房	3#后加工车间	1F	20800	41600	2F	23562.525	33469.25	
	<i>//</i> 5	3#立体仓库	2F	12000	12000	1F	25566.5	25166.24	6#后加工
		碎浆车间	1F	5400	5400	1F	8977.25	8998.5	车间位置
	5#联	造纸车间	2F	12800	25600	3F	4400	10284	从6#联合
2	合厂房	5#后加工车间	1F	20800	41600	2F	23566.75	32016.31	厂房移至
		6#后加工车间	1F	/	/	2F	12134.4	12134.4	5#造纸车 间北侧,
		1#原纸仓库	2F	12000	12000	1F	13556.38	12672.17	内北侧, 各功能车
	TYY	碎浆车间	1F	5400	5400	1F	11971.25	11992	间的占地
3	6#联 合厂	造纸车间	2F	12800	25600	3F	14680.725	31530.24	面积及建
3	房	6#后加工车间	1F	20800	41600	2F	/	/	筑面积均 与原环评
	// 4	2#原纸仓库	2F	12000	12000	1F	16864.75	16039.02	有增有
		碎浆车间	1F	5400	5400	1F	8977.25	8998.5	减。
	7#联	造纸车间	2F	12800	25600	3F	9538.55	22497.05	
4	合厂	7#后加工车间	1F	20800	41600	2F	23572.91	33416.73	
	房	7#立体仓库 (电商仓库)	2F	12000	12000	1F	21931	35229.58	

表 3.2-5 公用及辅助工程建设情况表

类别	建设名称	全厂环评批复生产能力	第一、第二阶段已验收实际 建设情况	项目第一、第二以及第三阶 段合计环评审批情况	项目第一、第二以及第三 阶段合计实际建设情况	变化情况
	给水	项目用水量6350530m³/a, 来自市政自来水管网	项目用水量2887190m³/a, 来自市政自来水管网	项目用水量6350530m³/a, 来自市政自来水管网	项目用水量 6350530m³/a,来自市政 自来水管网	与环评内容一 致,无变化
公用工程	排水	厂区设雨污分流系统。雨水排入雨水管网,污水排放量为5280058m³/a(15529m³/d),生产废水、生活污水、初期雨水经收集后一并排入厂内污水处理站处理,处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海	厂区设雨污分流系统。雨水排入雨水管网,污水排放量为2346766m³/a,生产废水、生活污水、初期雨水经收集后一并排入厂内污水处理站处理,处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海	厂区设雨污分流系统。雨水排入雨水管网,污水排放量为5280058m³/a,生产废水、生活污水、初期雨水经收集后一并排入厂内污水处理站处理,处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海	厂区设雨污分流系统。雨水排入雨水管网,污水排放量为5280058m³/a,生产废水、生活污水、初期雨水经收集后一并排入厂内污水处理站处理,处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海	与环评内容一 致,无变化
	供电	用电由临港工业区热电厂供 电。年用电量6.88亿kWh	用电由临港工业区热电厂供 电。年用电量3.11亿kWh/a	用电由临港工业区热电厂供 电。年用电量6.80亿kWh/a	用电由临港工业区热电厂 供电。年用电量6.80亿 kWh/a	与环评内容一 致,无变化
	供汽	蒸汽由临港工业区热电厂提供,1.6Mpa(G): 210.3t/h	蒸汽由临港工业区热电厂 (如东产业园热电联产项 目)提供,1.6Mpa(G): 97.05t/h	蒸汽由临港工业区热电厂提供,1.6Mpa(G): 210.3t/h	蒸汽由临港工业区热电厂 提供,1.6Mpa(G): 210.3t/h	与环评内容一 致,无变化
	供气	建有压缩空压气站一座,配 置15台250kw空压机,总用 气量约280m³/min,压力为 0.8MPa(G)	建有压缩空压气站一座,配 置10台250kw空压机,总用 气量约212.5m³/min,压力为 0.8MPa(G)	建有压缩空压气站一座,配 置15台250kw空压机,总用 气量约280m³/min,压力为 0.8MPa(G)	建有压缩空压气站一座, 配置15台250kw空压机, 总用气量约280m³/min, 压力为0.8MPa(G)	与环评内容一 致,无变化
明子 /二	浆板库	纸浆由7座浆板库储存,占 地面积68000m²	纸浆由3座浆板库储存,占 地面积26460m²	纸浆由7座浆板库储存,占 地面积68000m²	纸浆由7座浆板库储存, 占地面积68000m²	与环评内容一 致,无变化
<u></u>	立体仓库 (成品仓 库)	6座,占地面积6× 12000=72000m ²	3座,占地面积3× 22470=67410m ²	6座,占地面积6× 12000=72000m ²	5座(含电商立体仓 库),合计占地面积为 98919.66m ²	减少1座立体仓 库,立体仓库 总占地面面积

						相较于原环评 有所增加
	原纸仓库	2座,占地面积2× 12000=24000m ²	/	2座,占地面积2× 12000=24000m ²	2座, 其中1#原纸仓库占 地面积13556.38m²、2#原 纸仓库占地面积 16864.75m², 合计占地面 积为30421.13m²	原纸仓库占地 面积相较于原 环评有所增加
	原辅料仓 库	3座,占地面积3× 9000=27000m²	2座原料堆场,占地面积2× 15000=30000m²	3座,占地面积3× 9000=27000m²	3座原料堆场,占地面积3 ×9000=27000m²	与环评内容一 致,无变化
	湿巾仓库	1座,占地面积1× 9000=9000m²	/	/	/	未建设
	废水处理	污水排放量为5280058m³/a (15529m³/d),设有污水 处理站一座	排水量2346766m³/a,设有 污水处理站一座	排水量5280058m³/a,设有 污水处理站	排水量5280058m³/a,设 有污水处理站	与环评内容一 致,无变化
环保 工程	废气处理	卷取废气: 13套湿式除尘系统+13根30m高排气筒(对应13条生产线,每条生产配置1套湿式除尘系统)复卷废气: 8套湿式除尘系统统+8根30m高排气筒(对应8台复卷机,每台复卷机配置1套湿式除尘系统)	卷取废气: 12套湿式除尘系 统+12根23m高排气筒(对 应12条生产线,每条生产配 置1套湿式除尘系统)	卷取废气: 13套湿式除尘系 统+13根23m高排气筒(对 应13条生产线,每条生产配 置1套湿式除尘系统)	卷取废气: 24套湿式除尘系统+24根23m高排气筒(对应24条生产线,每条生产配置1套湿式除尘系统)	相较于原环 评,建成后全 厂相较于原环 评增加了11套 湿式除尘系统
	噪声	合理车间平面布置、隔声、 减振等	合理车间平面布置、隔声、 减振等	合理车间平面布置、隔声、 减振等	合理车间平面布置、隔 声、减振等	与环评内容一 致,无变化
	事故应急池	一座,4000m³	建有应急池一座,长 42.25m,宽19.95m,深 7.2m,有效容积5500m ³	依托现有事故应急池	依托现有事故应急池	与环评内容一 致,无变化
	固废 暂存	设有1座1300m²危废仓库、1 座500m²一般固废仓库	设有1座127m ² 危废仓库、1 座1170m ² 一般固废仓库,位 于生产区域厂区南侧	依托现有危废仓库、一般固 废仓库	依托现有危废仓库、一般 固废仓库	与环评内容一 致,无变化

表3.2-6 项目主要设备一览表

 	一口	1几夕 わぶっ	全厂环评	审批情况		介段已验收建 青况	环评第三阶	段审批情况	第三阶段实际	建设情况	亦仏具	
序号	工段	设备名称	规格 (型号)	数量 (单位)	规格 (型号)	数量 (单位)	规格 (型号)	数量 (单位)	规格 (型号)	数量 (单位)	变化量	
1		链板输送机	成套设备	7套	成套设备	3套	成套设备	4套	成套设备	4套	不变	
2	14 10 1	水力碎浆机	成套设备	15套	成套设备	6套	成套设备	9套	成套设备	7套	-2套	
3	浆料处 理工段	高浓除渣器	成套设备	15套	成套设备	12套	成套设备	9套	成套设备	12套	+3套 ^①	
4		磨浆机	成套设备	26套	成套设备	18套	成套设备	15套	成套设备	19套	+4套 ^①	
5		疏解机	成套设备	14套	成套设备	12套	成套设备	8套	成套设备	12套	+4套 ^①	
6		冲浆泵	成套设备	13台	成套设备	12台	成套设备	7台	成套设备	12台	+5台 ^②	
7		压力筛	成套设备	26台	成套设备	24台	成套设备	14台	成套设备	24台	+10台 ^②	
									净纸幅宽 5600mm	2套		
8		造纸机	净纸幅宽 5600mm	13套	净纸幅宽 3600mm	12套	净纸幅宽 5600mm	7套	净纸幅宽 3600mm	8套	+5套 ^②	
	抄纸工								净纸幅宽 2800mm	2套		
9	段	复卷机	成套设备	8台	/	/	/	/	/	/	不变	
10		多圆盘纤维 回收机	成套设备	13套	成套设备	6套	成套设备	7套	成套设备	7套	不变	
11		真空系统	成套设备	13套	成套设备	12套	成套设备	7套	成套设备	12套	+5套 [©]	
12		蒸汽冷凝水 系统	成套设备	13套	成套设备	12套	成套设备	7套	成套设备	12套	+5套 [©]	
13		纸卷输送线	成套设备	7条	成套设备	3套	成套设备	4套	成套设备	4套	不变	
14	后加工	复卷分切机	400m/min	16台	400m/min	8台	400m/min	8台	400m/min	3台	-5台 [®]	
15	工段 (卷纸	灌肠式单包 机	200包/min	26台	200包/min	15台	200包/min	11台	200包/min	8台	-3台 [®]	
16	筒、无	中包机	20包/min	31台	20包/min	19台	20包/min	12台	20包/min	4台	-4台 [®]	

	芯卷筒								40包/min	4台	
17	纸)	大包袋机	10 袋/min	16台	10袋/min	7台	10袋/min	9台	10袋/min	3台	-6台 [®]
18		自动折叠机	140m/min	57台	140m/min	20台	-23台 [®]	37台	150m/min	16台	+3台
									200m/min	3台	
									230m/min	3台	
									100m/min	7台	
									160包/min	10台	
									500包/min	1台	
19									120盒/min	58台	
	后加工	自动装盒机(单包机)	100盒/min	114台	100盒/min	66台	100盒/min	48台	45包/min	6台	+40台 ³ +1台 ³
	工段								55包/min	2台	
	(面巾								30包/min	3台	
	纸-盒								80包/min	5台	
	抽、软 抽)								160包/min	10台	
	1m >								500包/min	4台	
		中包机	40包/min	76台	40包/min	32台	40包/min	44台	40包/min	28台	
									25包/min	11台	
									35包/min	1台	
									20包/min	5台	
20		多包机	25提/min	38台	/	/	/		/	/	不变
21		自动装箱机	10箱/min	57台	10箱/min	24台	10箱/min	33台	10箱/min	31台	-2台 [®]
22		输送机构	/	19台	/	24台	/	14台	/	17台	+3台
23	后加工	分切复卷机	400m/min	27台	/	/	/	27台	/	1台	-26台 [®]
24	工段 (厨房	中包机	40包/min	4台	/	/	/	4台	/	6台	+2台 ^③
25	用纸)	自动装箱机	10箱/min	3台	/	/	/	3台	/	1台	不变

26		单片机	成套设备	27套	/	/	/	/	/	/	未建设
27	湿巾纸	多片机	成套设备, 10-20片	4套	/	/	/	/	/	/	未建设
28		多片机	成套设备, 40-80片	3套	/	/	/	/	/	/	未建设

注:①原环评第三阶段浆料处理工序中水力碎浆机9套、高浓除渣器9套、磨浆机15套、疏解机8套,实际生产过程中共有水力碎浆机7套、高浓除渣器12套、磨浆机19套、疏解机12套,上述设备不属于决定产能的设备,设备数量变动不会导致产能变化,不会新增污染物,不属于重大变动:

②原环评中项目第三阶段抄纸工序共7套造纸机,单套造纸机净纸幅宽为5600mm。实际建设过程中造纸机净纸幅宽共3个型号,分别为5600mm、3600mm、2800mm,最大设计车速相较于原环评均有所减少。为确保项目第三阶段产能能够达到环评审批要求,项目第三阶段实际建设过程中共有12套造纸机,其中净纸幅宽5600mm造纸机2套、净纸幅宽3600mm造纸机8套、净纸幅宽2800mm造纸机2套,共新增5套造纸机,与造纸机配套的冲浆机、真空系统以及蒸汽冷凝水系统均由7台增加至12台,压力筛由14台增加至24台。变动前后项目第三阶段产能不发生变化,无新增污染物,不属于重大变动。

③原环评中卷纸筒、无心卷筒纸后加工工序中复卷分切机8台、灌肠式单包机11台、中包机12台、大包装机9台,面巾纸-盒抽、软抽后加工工序中自动折叠机37台、自动装盒机(单包机)48台、中包机44台、自动装箱机33台,厨房用纸后加工工序中分切复卷机27台、中包机4台。实际建设过程中卷纸筒、无心卷筒纸后加工工序中复卷分切机3台、灌肠式单包机8台、中包机8台、大包装机3台,面巾纸-盒抽、软抽后加工工序中自动折叠机40台、自动装盒机(单包机)88台、中包机45台、自动装箱机31台,厨房用纸后加工工序中分切复卷机1台、中包机6台即可满足生产需求,设备型号及数量均有所变化,后加工工序无污染物产生,设备变动不会导致新增污染物,不属于重大变动。

3.3 主要原辅材料及燃料

本项目涉及的主要原辅材料能源消耗见表3.3-1。

表 3.3-1 项目能源和物料消耗情况汇总表

序号	产品名称	原料名称	来源	全厂环评用 量(t/a)	第三阶段环 评审批情况 (t/a)	第三阶段实 际建设情况 (t/a)	项目第三阶段调试期间消耗量(t/a)						
							11月1日	11月2日	11月6日	11月7日	11月29日	11月30日	(t/a)
1	生活用纸	漂白阔叶 木浆板	外购	585000	315000	315000	1332.16	1423.36	992.79	1073.33	1503.85	1271.34	不变
		漂白针叶 木浆板	外购	251000	135153.8	135153.8	571.05	610.27	426.13	460.45	645.05	544.98	不变
		粘缸剂	外购	858	462	462	1.93	2.09	1.44	1.57	2.18	1.80	不变
		脱缸剂	外购	390	210	210	0.87	0.90	0.60	0.71	1.04	0.82	不变
		湿强剂	外购	5465	2942.692	2942.692	12.40	13.27	9.26	10.03	14.06	11.86	不变
		柔软剂	外购	78	42	42	0.17	0.18	0.12	0.14	0.19	0.163	不变
		控制剂	外购	210.6	113.4	113.4	0.47	0.50	0.35	0.38	0.54	0.45	不变
		杀菌剂	外购	2340	1260	1260	5.32	5.69	3.97	4.28	6.01	5.08	不变
	湿巾 纸 _	无纺布	外购	2000	/	/	/	/	/	/	/	/	/
2		包膜	外购	900	/	/	/	/	/	/	/	/	/
		新鲜水	外购	8000	/	/	/	/	/	/	/	/	/

3.4 水源及水平衡

本项目用水主要造纸单元用水、绿化用水和生活用水,来自市政自来水 管网。

根据《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书》中"图3.5-1拟建项目水平衡图"可知,项目造纸单元用水为6240000t/a、生活用水为12240t/a、绿化用水为98290t/a。目前项目第三阶段建成后全厂产能为78万吨生活用纸,产能已达审批产能的100%,故造纸单元用水为6240000t/a、生活用水为12240t/a、绿化用水为98290t/a。

根据《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书》中"图3.4-1拟建项目水平衡图"可知,项目造纸单元废水产生量为5258069t/a、生活污水产生量为11664t/a、初期雨水产生量为10325t/a。目前项目第三阶段建成后全厂产能已达审批产能的100%,故项目第三阶段建成后全厂废水量为5258069+11664+10325=5280058t/a。

生产废水、生活污水利用泵经架空管道输送至污水处理站,初期雨水用泵抽至污水处理站。污水处理站处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海。

本项目第三阶段建成后全厂实际水平衡图如下。

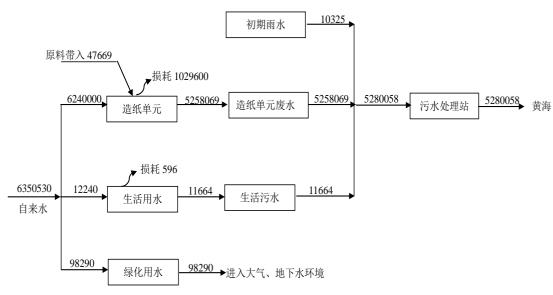


图3.4-1 项目第三阶段建成后全厂水平衡图(t/a)

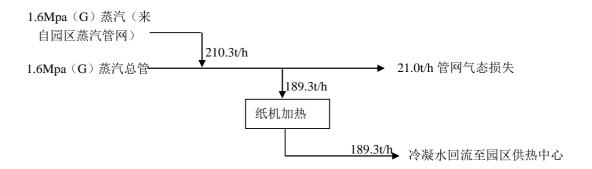


图3.4-2 项目第三阶段建成后全厂蒸汽平衡图(t/h)

3.5 生产工艺

1、生活用纸生产工艺流程如下:

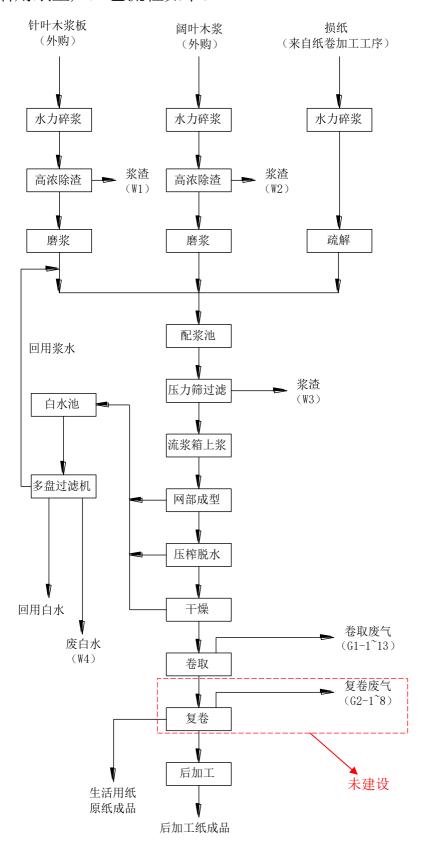


图3.5-1 生活用纸生产工艺流程及产污环节图

工艺流程说明:

(1) 浆料处理工段

浆料处理工段分漂白针叶木浆板处理、漂白阔叶木浆处理以及损纸处理 三部分。

①浆板预处理

外购的漂白针叶木浆板及漂白阔叶木浆经链板输送机输送至水力碎浆机 进行碎浆处理,浆板与来自白水回收工序的水混合,经水力碎浆机内的转子 刀盘进行物理破碎、打散,打散后的浆水经泵送至锥形高浓除渣器除渣处理, 除去浆渣等杂质,除渣后的浆水经泵送至磨浆机打浆,使纤维发生分丝帚化。 经上述预处理后的浆水经计量后送入配浆池进行后续处理。

除渣工序产生的浆渣(W1、W2)经收集后外送处置。

②损纸处理

来自抄纸工段生产过程中(如换起皱刀时)的损纸、纸的封边,以及从复卷机工段风送过来的修边损纸;以及原纸纸卷加工工段复卷过程中产生的外层剥除原纸损纸、断头接头的损纸与来自白水回收工序的水混合,经水力碎浆机内的转子刀盘进行物理破碎、打散,然后再经疏解机疏解处理,经计量后送入配浆池进行后续处理。

(2) 抄纸工段

来自浆料处理工段的各股浆料经泵送至配浆池,与来自白水回收工序的白水在管线内混合稀释后送至压力筛进行过滤处理,良浆送至流浆箱,进行上网成型抄造、机械压榨脱水、蒸汽间接烘干干燥、卷取,产出原纸大纸卷。

压力筛过滤处理过程中产生的浆渣(W3)经收集后送至厂区废水处理厂处理。大纸卷干燥、卷取过程中会产生少量含纸粉废气,分别经配套的纸粉收集装置收集后送至水喷淋装置处理,大部分纸粉被喷淋吸收,少部分未被吸收的纸粉分别经排气筒排放。

上网成型及压榨脱水过程中产生的白水送至多圆盘过滤机进行过滤回收

浆料处理,回收的浆料回到配浆池回用;部分稀白水回用于浆料处理工段稀释浆料和抄纸工段纸机成型部、压榨部喷淋,剩余废白水(W4)送至厂区污水处理站处理。干燥过程中产生的大量水蒸气经管道引至车间顶部排放。

生活用纸原纸大纸卷部分送至后加工工段继续进行差异化加工成不同用 途和包装形式的生活用纸产品,部分通过复卷机设备,按照客户的订单要求, 复卷成1-4层、客户规定的宽度和直径的小纸卷和纸盘。这些小纸卷和纸盘再 经过后续的缠绕膜包装机的包膜包装加工处理后,通过叉车运送入成品仓库,等待销售出库。

在纸卷加工过程中产生的含纸粉废气(G2-1~8)分别经配套的纸粉收集装置收集后送至水喷淋装置处理,大部分纸粉被喷淋吸收。

纸卷加工过程中会产生部分废纸卷缠绕包装膜(S1)及废纸芯管(S2), 统一收集后外售综合利用。

(3) 后加工工段

后加工工段主要是以来自抄纸工段的生活用纸原纸进行精加工,通过压花、打孔、复卷、分切、封口等工序生产差异化的后加工纸,主要包括卷筒纸、软抽纸、盒抽纸、无芯卷筒等,经差异化加工后的后加工纸经自动包装及自动输送系统送至成品仓库。

3.6 项目变动情况

3.6.1变动内容

本项目实际建设情况和环评对照,主要变动内容有:

- (1)本项目因项目施工进度以及企业建设计划的调整,目前项目第三阶段已建成,本次验收仅对第三阶段进行验收。
- (2)项目原环评审批具有年产78万吨/年高档生活用纸的生产能力,其中成品原纸24万吨/年,后加工纸生产能力54万吨/年。实际生产过程中具有年产78万吨/年高档生活用纸的生产能力,其成品原纸产能减少至12万吨/年,后加工纸产能增加至66万吨/年,后加工纸生产工艺主要为压花、打孔、分切、封口等,无废气、废水产生,故后加工纸产能变动后不会导致新增污染物种类,不会导致污染物排放量增加,不属于重大变动。

(3) 生产装置发生变化

- ①原环评第三阶段浆料处理工序中水力碎浆机9套、高浓除渣器9套、磨浆机15套、疏解机8套,实际生产过程中共有水力碎浆机7套、高浓除渣器12套、磨浆机19套、疏解机12套,上述设备不属于决定产能的设备,设备数量变动不会导致产能变化,不会新增污染物,不属于重大变动。上述设备型号及数量均与2023年6月21日重新申领的排污许可证一致。
- ②原环评中项目第三阶段抄纸工序共7套造纸机,单套造纸机净纸幅宽为5600mm。实际建设过程中造纸机净纸幅宽共3个型号,分别为5600mm、3600mm、2800mm,最大设计车速相较于原环评均有所减少。为确保项目第三阶段产能能够达到环评审批要求,项目第三阶段实际建设过程中共有12套造纸机,其中净纸幅宽5600mm造纸机2套、净纸幅宽3600mm造纸机8套、净纸幅宽2800mm造纸机2套,共新增5套造纸机,与造纸机配套的冲浆机、真空系统以及蒸汽冷凝水系统均由7台增加至12台,压力筛由14台增加至24台。变动前后项目第三阶段产能不发生变化,无新增污染物,不属于重大变动。造纸机设备型号及数量均与2023年6月21日重新申领的排污许可证一致。

③原环评中卷纸筒、无心卷筒纸后加工工序中复卷分切机8台、灌肠式单包机11台、中包机12台、大包装机9台,面巾纸-盒抽、软抽后加工工序中自动折叠机37台、自动装盒机(单包机)48台、中包机44台、自动装箱机33台,厨房用纸后加工工序中分切复卷机27台、中包机4台。实际建设过程中卷纸筒、无心卷筒纸后加工工序中复卷分切机3台、灌肠式单包机8台、中包机8台、大包装机3台,面巾纸-盒抽、软抽后加工工序中自动折叠机40台、自动装盒机(单包机)88台、中包机45台、自动装箱机31台,厨房用纸后加工工序中分切复卷机1台、中包机6台即可满足生产需求,设备型号及数量均有所变化。后加工工序无污染物产生,设备变动不会导致新增污染物,不属于重大变动。上述设备型号及数量均与2023年6月21日重新申领的排污许可证一致。

(4) 厂区平面布局发生变化:

- ①原环评中造纸联合厂房由南到北依次分布为成品仓库、中转仓、造纸车间、碎浆车间,项目在实际建设过程中对联合造纸厂房的布局进行调整,由南到北分布为碎浆车间、造纸车间、后加工车间、立体仓库,厂房布局变化未导致卫生防护距离内新增敏感目标,不属于重大变动;
- ②排气筒位置发生变化,原环评中1台造纸机对应1根排气筒。3#、5#、6# 造纸车间均布置2台造纸机,7#车间布置1台造纸机,对应的排气筒分别位于造纸 车间东西两侧。实际建设过程中5#、6#造纸车间各布置2台造纸机,3#、7#造纸 车间各布置4台造纸机,对应的排气筒位于造纸车间顶部呈东西向分布;
- ③实际建设过程中碎浆车间、造纸车间、后加工车间、立体仓库的占地面积及建筑面积与原环评相比,存在着增加和减少的情况(具体变化情况详见表3.2-3)。主要构筑物的占地面积、建筑面积变化,未导致卫生防护距离内新增敏感目标,不属于重大变动。
- ④原环评中在7#联合厂房南侧设置1座占地面积为1300m²危废仓库。由于本项目污泥已鉴别为一般固废,无需贮存在危废仓库内,项目实际运营过程中产生的危险废物为废机油、废机油桶,废机油产生量为20t/a、废机油桶产生量为

2.5t/a。故实际建设过程中危废仓库位置调整至2#联合厂房南侧,与甲类仓库共用一个建筑物,危废仓库占地面积为127m²,能够满足危险废物贮存要求。上述变动不会导致项目环境风险增加,不会导致新增污染物,不属于重大变动。

(5) 污染防治措施发生变化:

①废气:原环评项目第三阶段共有7台造纸机,对应7条产能为6万吨的造纸生产线,产生的卷取废气经7套湿式除尘系统处理后,通过7根30m高排气筒排放。实际建设过程中,由于造纸生产线主要生产设备造纸机型号变化,为确保项目第三阶段产能能够达到环评审批要求,项目第三阶段实际建设过程中共有12套造纸机,对应10条3万吨产能造纸生产线、2条6万吨产能造纸生产线,产生的卷取废气经12套湿式除尘系统处理后,通过12根23m高排气筒排放。排气筒的个数由7根变为了12根,同时高度由30m变为23m。

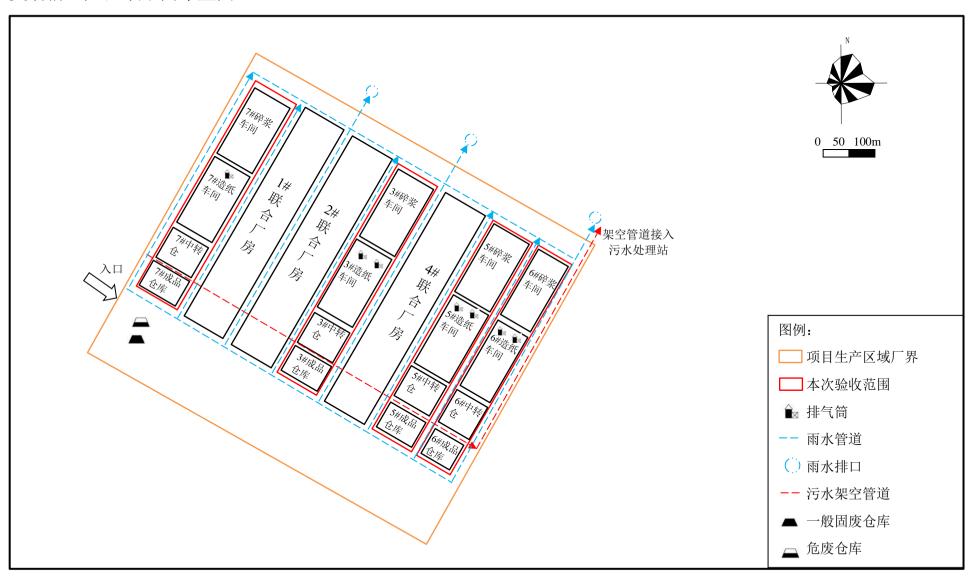
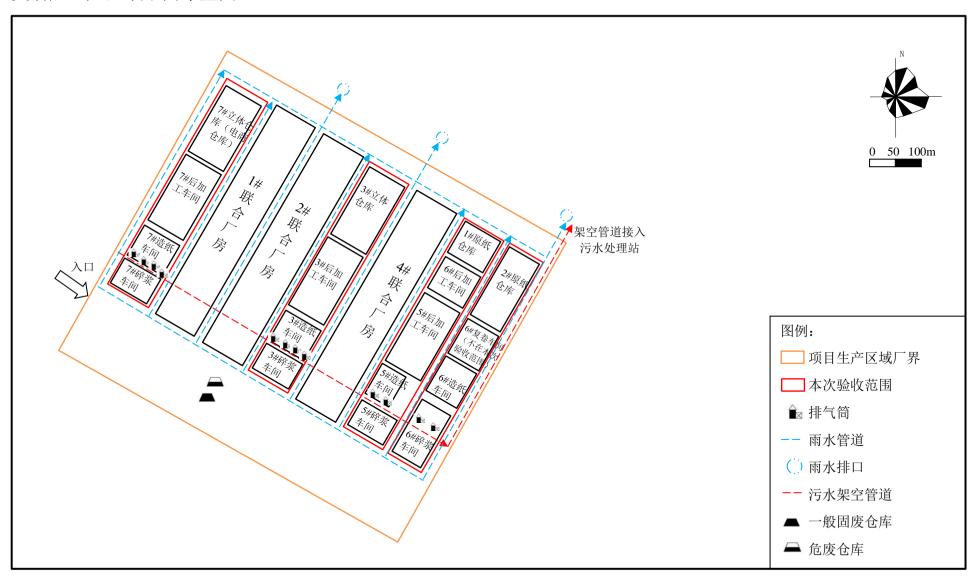

原环评中排气筒情况 实际排气筒情况 排 排气 气 车间 直径 风速 风量 高度 合计排放 直径 风速 风量 高度 合计排放 筒编 筒 m/s m^3/h 风量m3/h m/s m^3/h 风量m³/h m m m m 묵 编 号 5# 1.2 17.2 70000 30 9# 1.2 18.4 75000 23 3#联 17.2 70000 30000 6# 1.2 30 10# 1.2 7.4 23 合厂 / 11# 1.2 35000 / 8.6 23 房 / / / / / 1.2 35000 12# 8.6 23 5#联 17.2 9# 1.2 70000 30 17# 1.2 4.9 20000 23 合厂 10# 1.2 17.2 70000 30 18# 1.2 25000 23 4900000 4100000 6#联 1.2 17.2 70000 30 19# 1.2 9.8 40000 23 11# 合厂 17.2 12# 1.2 70000 30 1.2 45000 23 20# 11.1 房 13# 1.2 17.2 70000 30 21# 1.2 7.4 30000 23 7#联 25000 / / 22# 1.2 6.1 23 合厂 23# / / / / / 1.2 6.1 25000 23 房 24# 1.2 6.1 25000

表3.6-1 项目第三阶段变动前后排气筒变化情况一览表


由于《制浆造纸建设项目重大变动清单(试行)》(环办环评[2018]6号) 未对排气筒个数及高度变动明确是否为重大变动,故参照《污染影响类建设 项目重大变动清单(试行)》(环办环评函〔2020〕688号)对上述变动是否 为重大变动进行分析。 对照《造纸行业排污许可证申请与核发技术规范》(环水体[2016]189号)中"造纸行业废气主要排放口为碱回收炉和锅炉废气排放口,一般排放口为石灰窑和焚烧炉废气排放口,其他有组织废气由企业在申请排污许可证阶段自行申报",根据《金红叶纸业(南通)有限公司排污许可证》(许可证编号:91320623MA1UTBDD3H001P),本次验收涉及的卷取废气排气筒属于一般排放口,故卷取废气排气筒高度及数量变动不属于《污染影响类建设项目重大变动清单(试行)》(环办环评函〔2020〕688号)中"新增废气主要排放口(废气无组织排放改为有组织排放的除外);主要排放口排气筒高度降低10%及以上的"的情形,且根据表3.6-1变动前后排气筒变化参数变化一览表可知,变动后废气排放量并未增加。故上述变动不会导致新增污染物及污染物排放量增加,不属于重大变动。污染防治设施数量、排气筒数量及高度情况均与2023年6月21日重新申领的排污许可证一致。

- ②废水:原环评中污水站处理工艺为"调节+初沉+A/O+二沉",实际建设过程中,为确保废水稳定达标排放,在初沉池前增加斜网间、前混凝池,在二沉池后增加后混凝池、三沉池、滤布滤池,实际污水站废水处理工艺为"斜网过滤+调节+前混凝+初沉+A/O+二沉+后混凝+三沉+滤布过滤"。根据验收监测报告可知,废水处理工艺变动后废水中各污染物均能达标排放,排放量满足总量指标,故上述变动未导致新增污染物和污染物排放量增加,不属于重大变动。
- ③固废:原环评未考虑废纸卷缠绕包装膜、废纸芯管、废机油桶的产生情况。实际建设过程中,废纸卷缠绕包装膜和废纸芯管统一收集后外售,污水站污泥经鉴别后属于一般固废,已按照一般固废委托处置,废机油桶作为危险废物委托有资质单位处置。全厂固废排放量为零,不属于重大变动。

变动前生产区域平面布置图:

变动后生产区域平面布置图:

3.6.2变动界定

根据《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》(苏环办[2021]122号)、《制浆造纸建设项目重大变动清单(试行)》(环办环评〔2018〕6号)对项目变动情况进行变动界定。

表3.6-2 项目变动情况与环办环评〔2018〕6号对照分析表

类别	《制浆造纸建设项目重大变动清单(试行)》(环办环评(2018)6号)	项目环评建设情况	实际建设情况	是否为重大变动
规模	1. 木浆或非木浆生产能力增加20%及以上; 废纸制浆或造纸生产能力增加30%及以上。	原环评项目第三阶段共有7 台造纸机,建设7条产能为6 万吨的造纸生产线,具有年 产42万吨/年高档生活用纸 的生产能力,其中成品原纸 24万吨/年,后加工纸生产 能力18万吨/年。	实际建设过程中由于造纸机造纸幅 宽减小,第三阶段造纸机变为12 套,实际建成10条3万吨产能造纸生 产线、2条6万吨产能造纸生产线, 具有年产42万吨/年高档生活用纸的 生产能力,其中成品原纸12万吨/ 年,后加工纸生产能力30万吨/年。	变动前后项目第三阶段造纸能力 仍为42万吨/年,第三阶段建成后 全厂造纸能力为78万吨/年,造纸 产能未发生变化。
建设地点	2. 项目(含配套固体废物 渣场)重新选址;在原厂址 附近调整(包括总平面布置 变化)导致防护距离内新增 敏感点。	①环评中造纸联合厂房由南到北依次分布为成品仓库、中转仓、造纸车间、碎浆车间; ②原环评中1台造纸机对应1根排气筒。3#、5#、6#造纸车间均布置2台造纸机,7#车间布置1台造纸机,对应的排气筒分别位于造纸车间东西两侧; ③原环评中各功能车间占地面积、建筑面积详见表3.2-	①项目在实际建设过程中对联合造纸厂房的布局进行调整,由南到北分布为碎浆车间、造纸车间、后加工车间、立体仓库;②排气筒位置发生变化,实际建设过程中5#、6#造纸车间各布置2台造纸机,3#、7#造纸车间各布置4台造纸机,对应的排气筒位于造纸车间顶部呈东西向分布;③实际建设过程中碎浆车间、造纸车间、后加工车间、立体仓库的占地面积及建筑面积与原环评相比,	厂房布局变化、排气筒位置变化、主要构筑物的占地面积、建筑面积变化、危废仓库位置变化均未导致卫生防护距离内新增敏感目标,不属于重大变动。

		3; ④原环评中7#联合厂房南侧 设置1座占地面积为1300m² 危废仓库。	存在着增加和减少的情况(具体变化情况详见表3.2-3)。 ④由于本项目污泥已鉴别为一般固废,无需贮存在危废仓库内,项目实际运营过程中产生的危险废物为废机油、废机油桶,其中废机油产生量为20t/a、废机油桶产生量为2.5t/a。故实际建设过程中危废仓库位置调整至2#联合厂房南侧,与甲类仓库共用一个建筑物,危废仓库占地面积为127m²,能够满足危险废物贮存要求。	
生产工艺	3. 制浆、造纸原料或工艺变化,或新增漂白、脱墨、制浆废液处理、化学品制备工序,导致新增污染物或污染物排放量增加。	制浆、造纸原料	/	
环境 保护 措施	4. 废水、废气处理工艺变化,导致新增污染物或污染物排放量增加(废气无组织排放改为有组织排放除外)。	原环评项目第三阶段共有7 台造纸机,对应7条产能为6 万吨的造纸生产线,产生的 卷取废气经7套湿式除尘系 统处理。 生产废水、生活污水以及初 期雨水经污水站处理,处理 工艺为"调节+初沉+A/O+ 二沉"。	项目第三阶段实际建设过程中共有 12套造纸机,对应10条3万吨产能造 纸生产线、2条6万吨产能造纸生产 线,产生的卷取废气经12套湿式除 尘系统处理。 生产废水、生活污水以及初期雨水 经污水站处理,处理工艺为"斜网 过滤+调节+前混凝+初沉+A/O+二沉 +后混凝+三沉+滤布过滤"。	废气处理工艺未发生变化。 废水处理工艺发生变动:在初沉 池前增加斜网间、前混凝池,在 二沉池后增加后混凝池、三沉 池、滤布滤池。根据验收监测报 告可知,废水处理工艺变动后废 水中各污染物均能达标排放,排 放量满足总量指标,故上述变动 未导致新增污染物和污染物排放 量增加,不属于重大变动。

5. 锅炉、碱回收炉、石灰 窑或焚烧炉废气排气筒高度 降低10%及以上。	本项目卷取废气排气	卷取废气排气筒属于一般排放 口,且不属于前述中锅炉、碱回 收炉、石灰窑或焚烧炉废气排气 筒,故排气筒高度变化不属于重 大变动。	
6. 新增废水排放口;废水 排放去向由间接排放改为直 接排放;直接排放口位置变 化导致不利环境影响加重。	本项目未新增废水排口,废 处理站处理后依托洋口港经 直接排放口	/	
7. 危险废物处置方式由外 委改为自行处置或处置方式 变化导致不利环境影响加 重。	危险废物需委托有资质的单位处置。污水站污泥在鉴别前从严按照危险废物管理,若鉴别属于危险废物,须根据其主要有害成分和危险特性确定所属废物类别,并按照危险废物进行归类管理,若鉴别不属于危险废物,按一般固废的进行回收利用或综合治理。	项目产生的各类危险废物需委托有 资质的单位处置。已对污水站污泥 进行了鉴别,属于一般固废,按照 一般固废进行处置。	项目危废处置方式未发生变化。

3.6.3变动分析结论

经上表对照分析,本项目的变动不属于重大变动,纳入竣工环境保护验收管理。

3.6.4变动管理

针对项目建设过程中发生的一般变动,公司已编制了《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目(第三阶段)一般变动环境影响分析》(详见附件14)。同时对照《排污许可管理条例》(国务院令第736号),项目变动属于"污染物排放口数量或者污染物排放种类、排放量、排放浓度增加的",公司已于2023年6

月21日进行了排污许可重新申请,重新申请后的排污许可包含本次验收内容,设备、工艺、污染防治设施均与排污许可证一致。

4 环境保护设施

4.1 污染物治理/处置设施

4.1.1废水

本项目实行雨污分流,本项目主要废水为:造纸单元产生的废水、生活污水以及初期雨水。造纸单元产生的废水主要来源于浆渣废水和造纸多余白水。浆渣废水主要污染因子为COD、SS,造纸多余白水主要污染因子为COD、BOD5、SS、氨氮、TN、TP、AOX、DXN。本项目生活污水主要源于职工办公生活,主要污染因子为COD、BOD5、SS、氨氮、TN、TP。初期雨水中主要污染因子为COD、SS。

造纸单元产生的废水、生活污水、初期雨水经现有污水处理站处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海。

废水产生及排放情况见表4.1-1。项目污水处理工艺流程见图4.1-1。

表4.1-1 废水产生及处理措施情况表

t.	来源	污染物名称	排放 规律	排方	女量			污染因子	设计指标		
废水 类别				第三阶段建成 后全厂审批排 放量	第三阶段建成 后全厂实际排 放量	治理设施	工艺与处理能力		原环评设 计去除效 率%	实际运行 中去除效 率%	排放去向
造纸	浆渣 废水	COD、SS				污水处理	污水处理站工 艺: 废水→调节 池→斜网→前混 凝池→初沉池→	COD	97.8	94.2	达到洋口 港经济开 发区污水
单元	造纸	COD, BOD ₅ ,						BOD_5	97.6	95.0	
废水	多余							SS	99.4	90.0	处理厂排
	排水	TP、AOX、DXN						氨氮	79.2	96.9	放标准后
	₩ П -	G05 505	间断	5280058m ³ /a	$5280058m^3/a$	站(现	A/0 池→二沉池 →后混凝池→三	TN	84.7	95.6	依托洋口
生活	职工 办公	COD、BOD₅、 SS、氨氮、TN、				有)	沉池→滤布滤池	TP	88.1	94.7	港经济开
污水	生活	SS、安(炎)、TN、 TP					→放流池;处理	AOX	33.3	55.8	发区污水 处理厂排
初期雨水	初期雨水	COD, SS					能力: 25000m³/d	DXN	/	/	海管道排海。

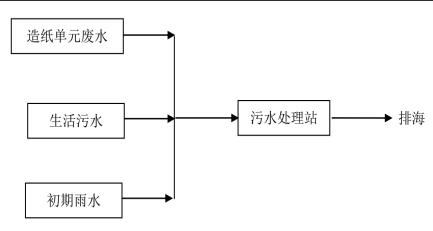


图4.1-1 废水流向示意图

现有污水处理站设计参数:

(1) 调节池

数量: 1座

结构:钢砼

外形尺寸: 20m×13.5m×4.5m

(2)斜网间

数量: 1座

结构:钢砼

占地面积: 1068.75m²

(3) 前混凝池

数量: 1座

结构: 钢砼

外形尺寸: 12.5m×5.5m×5.0m

(4) 初沉池

数量: 2座

结构:钢砼

外形尺寸: Φ30m×4.3m

(5) A/0池

数量: 1座

结构:钢砼

外形尺寸: 60m×70.4m×7.0m

(6) 二沉池

数量: 2座

结构:钢砼

外形尺寸: Φ36m×4.3m

(7) 后混凝池

数量: 1座

结构:钢砼

外形尺寸: 17m×5.5m×5.0m

(8) 三沉池

数量: 2座

结构:钢砼

外形尺寸: Φ30m×4.3m

(9) 滤布滤池

数量: 1座

结构:钢砼

外形尺寸: 7.5m×4.0m×4.0m

(10) 放流池

数量: 1座

结构:钢砼

外形尺寸: 31.85m×26.9m×3.8m。

4.1.2废气

(1) 生产工艺废气

本项目第三阶段共有12套造纸机,已在造纸机上方设置集气罩,卷取废气经管道收集后分别进入12套湿式除尘系统(每套造纸机对应1套湿式除尘系统),分别经12根23m高排气筒(9#~12#、17#~24#)排放。

本项目卷取工序未被收集的粉尘、污水处理站污水及污泥处理的过程中产生的少量氨、硫化氢等臭气,以无组织形式排放,通过加强生产管理减小无组织废气对环境的影响。

表4.1-2 废气收集、处理情况一览表

废气					てサト	设计指	标		排放	女源参数			治理设施监
名称	来源	污染物种类	排放方式	治理设施	工艺与 规模	污染因子	去除效 率%	高度 m	直径 m	烟道截 面积m²	温度℃	排放去向	测点设置情 况
卷取废 气	卷取工 序	颗粒物	有组织排放	湿式除尘 系统	12套湿 式除尘 系统	颗粒物	95	23	1.1	1.31	24.6- 33.5	9#~12#、 17#~24#排 气筒排放	已在排气筒 出口各设置 1个监测点
卷取废 气	卷取工 序	颗粒物	无组织排放	/	/	颗粒物	/	/	/	/	/	/	/
污水处 理站	污水处 理	氨、硫化氢、臭气浓度	无组织排放	/	/	氨、硫化氢、臭气浓度	/	/	/	/	/	/	/

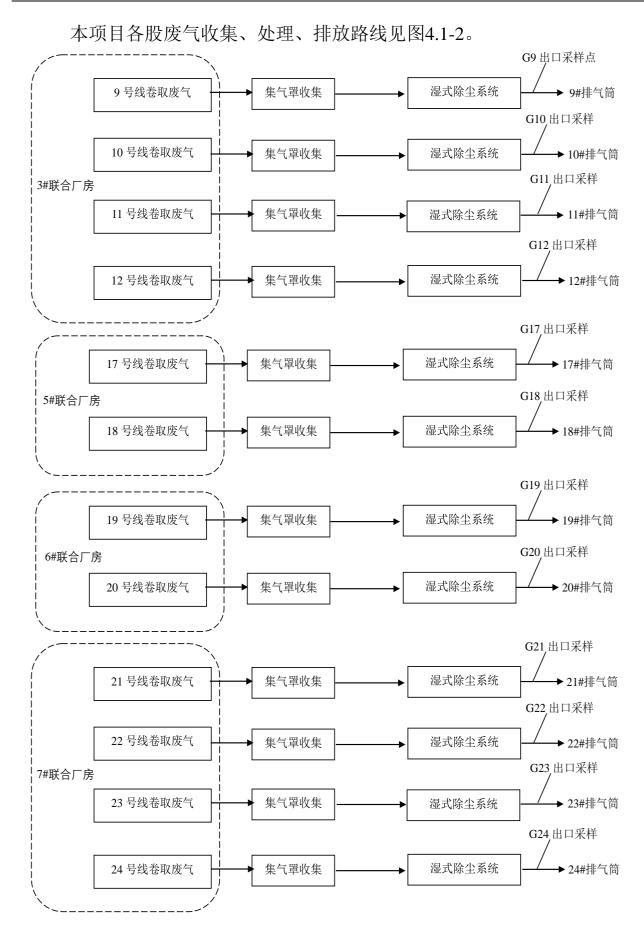


图4.1-2 废气收集、处理工艺流程图

卷取废气湿式除尘系统照片

卷取废气收集系统照片

排气筒照片

本项目湿式除尘系统设计参数如下:

表4.1-3 湿式除尘系统设计参数表

序号	项目	参数
1	最大设计风量	58000~81000m ³ /h
2	水压	0.5~3.5bar
3	循环水量	55~60m ³ /h
4	补充水	25m³/h
4	循环泵功率	11~15kw

本项目废气收集、处理变化情况详见下表。

表4.1-4 废气收集、处理变化情况一览表

	环评第三	三阶段批复	[情况			第三				
原环评	废气情	废气污	收集方	废气处理	实际排气	实际废	实际废气	收集方	实际废气处理	变化情况
排气筒编号	况	染因子	式	设施	筒编号	气情况	污染因子	式	设施	
5#~6#、	卷取废	颗粒物	集气罩	6套湿式	9#-12#、	卷取废	颗粒物	集气罩	12 套湿式除	增加6套湿式除尘
9#~13#	气	木以木工 17月	收集	除尘系统	17#~24#	气	木贝木丛 170] 	收集	尘系统	系统

由上表可知,本项目第三阶段环评时共有7条产能为6万吨的造纸生产线,合计产能为42万吨/年,每条生产线配备1套湿式除尘系统处理卷取废气,处理后的卷取废气通过6根30m高排气筒(5#~6#、9#~13#)排放。

项目第三阶段实际建设过程中,共建设10条3万吨、2条6万吨的造纸生产线,合计产能为42万吨/年,产能不变。 卷取废气经12套湿式除尘系统处理后,通过12根23m高排气筒(9#~12#、17#~24#)排放。卷取废气均已收集、处理, 对应的污染因子与环评一致,上述变动未导致新增污染因子及污染物排放量。

本项目处理效率变化情况详见下表。

表4.1-5 废气处理效率对比表

		环评批复情	况			实	际建设情况		
原环评排 气筒编号	废气收 集情况	废气污染因 子	废气处理设 施	处理效率	第三阶段实际 排气筒编号	实际废气 收集情况	实际废气 污染因子	实际废气 处理设施	处理效率
5#~6#\ 9#~13#	卷取废 气	颗粒物	湿式除尘系 统	95%	9#-12#\ 17#~24#	卷取废气	颗粒物	湿式除尘 系统	/

由于项目排气筒弯管较多,管道长度小于管径的三倍,不具备开孔取样条件,因此只对废气出口进行采样检测,所以未计算废气处理效率。

4.1.3噪声

本项目第三阶段噪声源主要为水力碎浆机、造纸机等;公司采取厂房隔 声、减震、距离衰减等综合措施来降低噪声对周围环境的影响。

表4.1-6 主要设备噪声源产生情况

序号	设备名称	数量	声级值 dB(A)/ 台	距最近厂 界位置m	运行 方式	治理 措施	降噪效果 dB(A)	
1	链板输送机	4套	70	W160				
2	水力碎浆机	7套	100	W160				
3	高浓除渣器	12套	85	W160				
4	磨浆机	19套	75	W160				
5	疏解机	12套	70	W160				
6	冲浆泵	12台	92	W160				
7	压力筛	24台	75	W160				
8	造纸机	12套	105	W160				
9	多圆盘纤维回收 机	7套	75	W160				
10	真空系统	12套	60	W160			25~35	
11	蒸汽冷凝水系统	12套	60	W160		采低噪声		
12	复卷分切机	3台	75	W160	稳定	设备、合理本品		
13	灌肠式单包机	8台	90	W160	运行	理布局、减震、用		
14	中包机	8台	90	W160		建筑隔声		
15	大包袋机	3台	90	W160)C) 1117		
16	自动折叠机	40台	90	W160				
17	自动装盒机(单 包机)	88台	90	W160				
18	中包机	45台	90	W160				
19	多包机	/	90	W160				
20	自动装箱机	31台	90	W160				
21	输送机构	17台	95	W160				
22	分切复卷机	1台	90	W160				
23	中包机	6台	90	W160				
24	自动装箱机	1台	90	W160				

4.1.4固(液)体废物

本项目产生的固体废物主要有废浆渣、废纸卷缠绕包装膜、废纸芯管、 污水站污泥、废机油、废机油桶以及职工生活垃圾。其中污泥经鉴别为一般 固废(鉴别报告详见附件7),按照一般固废委托处置;废浆渣、废纸卷缠绕包装膜、废纸芯管统一收集后出售;废机油、废机油桶委托有资质的单位处置。生活垃圾由环卫部门定期清运。本项目危废贮存依托现有一间127m²的危废仓库。

该项目固体废弃物产生及处置情况见表4.1-7。

表4.1-7本项目第三阶段建成后全厂固体废弃物产生及处置情况

固废名称	属性	产生工序	废物类别及 代码	环评全 厂产生 量 (t/a)	第三阶段建成后全厂实际产生量(t/a)	暂存量 (t/a)	处置量 (t/a)	处置方式
废浆渣		浆板预处 理工段、 斜板沉淀	SW15 221-001-S15	3300	3300	0	3300	回收出售
废纸卷 缠绕包 装膜	一般工	后加工	SW17 900-003-S17	/	292	0	292	回收出售
废纸芯 管	业固废	后加工	SW17 900-005-S17	/	5.81	0	5.81	回收出售
污水站 污泥		废水处理	SW07 220-001-S07	10920	10920	0	10920	经鉴别为一般 固废,按照一 般固废委托处 置
废机油	危险废	设备维护	HW08 900-214-08	20	20	0	20	委托有资质单 位处置
废机油 桶	物	设备维护	HW08 900-249-08	0	2.5	0	2.5	委托有资质单 位处置
生活垃 圾	一般废物	日常生活	99 900-999-99	75	75	0	75	环卫清运

注:原环评未考虑废纸卷缠绕包装膜、废纸芯管和废机油桶,实际建设过程中有废纸卷缠绕包装膜、废纸芯管、废机油桶产生,废纸卷缠绕包装膜和废纸芯管外售综合利用,废机油委托有资质单位处置。固废排放量为零,不属于重大变动。

危废仓库外部照片

危废仓库内部照片

一般固废仓库照片

本项目危险废物管理与《江苏省固体废物全过程环境监管工作意见》 (苏环办[2024]16号)、《危险废物贮存污染控制标准》(GB18597-2023)的 相符性分析:

表4.1-8 与苏环办[2024]16号文相符性对照表

序号	文件规定要求	实施措施	结论
1	6、规范贮存管理要求。根据《危险废物贮存污染控制标准》(GB18597-2023),企业可根据实际情况选择危险废物贮存设施或贮存点两类方式进行贮存,符合相应的污染控制标准。	本项目选择危废仓库对生 产过程中产生的危险废物 进行贮存,危废仓库防 雨、防渗、防盗,设置防 渗托盘,确保危险废物不 会对泄露至外部环境,造 成环境污染。	相符
2	8、强化转移过程管理。全面落实危险 废物转移电子联单制度,实行省内全域 扫描"二维码"转移。危险废物产生单位 须依法核实经营单位主体资格和技术能 力,直接签订委托合同,并向经营单位 提供相关危险废物产生工艺、具体成分 以及是否易燃易爆等信息,违法委托 的,应当与造成环境污染和生态破坏的 受托方承担连带责任。	公司已在危险废物系统内 提交危废管理计划,并落 实了危废转移联单制度, 核实了危废处置单位的资 质和能力,并直接签订了 危废处置合同。	相符

表4.1-9与《危险废物贮存污染控制标准》(GB18597-2023)相符性对照表

序号	文件规定要求	实施措施	结论
1	4.2 贮存危险废物应根据危险废物的类别、数量、形态、物理化学性质和环境风险等因素,确定贮存设施或场所类型和规模; 4.3 贮存危险废物应根据危险废物的类别、形	本项目危险废物产生 量较少,确定使用危 废仓库进行贮存; 危废仓库中贮存的危	相符

	态、物理化学性质和污染防治要求进行分类 贮存,且应避免危险废物与不相容的物质或 材料接触 4.5 危险废物贮存过程产生的液态废物和固态 废物应分类收集,按其环境管理要求妥善处 理。 4.6 贮存设施或场所、容器和包装物应按 HJ1276要求设置危险废物贮存设施或场所标 志、危险废物贮存分区标志和危险废物标签 等危险废物识别标志。	险废物粘贴分区标志 和危废标签。	
2	6.1.1 贮存设施应根据危险废物的形态、物理 化学性质、包装形式和污染物迁移途径,采 取必要的防风、防晒、防雨、防漏、防渗、 防腐以及其他环境污染防治措施,不应露天 堆放危险废物。 6.1.3贮存设施或贮存分区内地面、墙面裙 脚、堵截泄漏的围堰、接触危险废物的隔板 和墙体等应采用坚固的材料建造,表面无裂 缝。	危废仓库已采取防 风、防晒、防雨、防 漏、防渗、防腐措 施,地面、墙角等均 无裂缝。	相符
3	8.2.1 危险废物存入贮存设施前应对危险废物 类别和特性与危险废物标签等危险废物识别 标志的一致性进行核验,不一致的或类别、 特性不明的不应存入。	危废危废入库前,危 废仓库管理人员对危 废类别、标签的一致 性进行核查。	相符
4	8.2.4 贮存设施运行期间,应按国家有关标准 和规定建立危险废物管理台账并保存。	已建立危险废物管理 台账制度,对出入库 的危险废物进行记 录,同时在危废系统 内进行记录。	相符

本项目一般固废管理与《一般工业固体废物贮存和填埋污染控制标准》 (GB18599-2020)的相符性分析

表4.1-10 本项目与GB18599-2020相符性对照表

序号	文件规定要求	实施措施	结论
1	4.3贮存场、填埋场不得选在生态保护红线区域、永久基本农田集中区域和其他需要特别保护的区域内。	本项目一般固废仓库位于车间内 部,选址不属于生态保护红线区 域、永久基本农田集中区域和其他 需要特别保护的区域内。	相符
2	5.2.1 当天然基础层饱和渗透系数不大于1.0x10 ⁻⁵ cm/s,且厚度不小于0.75m时,可以采用天然基础层作为防渗衬层。	一般固废仓库地面基础及内墙采取 防渗措施,防止污泥对土壤和地下 水造成影响。	相符

4.2 其它环保设施

4.2.1环境风险防范设施

全厂设有一座5500m³(长42.25m,宽19.95m,深7.2m)的事故应急池,位于污水处理站的中部,用于收集事故状态下的事故废液及消防废水。

全厂设有4个雨水排口,雨水排口均设有控制闸阀,控制闸阀下雨时开启, 其余时间处于关闭状态,雨水排口均设有雨水监控系统。

本项目产生的废水经污水处理站处理后由泵提升后外排,废水排放口已安装水质CODcr在线监测仪、水质氨氮在线监测仪、水质总氮在线监测仪、水质总磷在线监测仪、在线pH仪和流量计,并通过了在线监测系统验收。

雨水排口自动监控系统照片

废水排放口自动监控系统照片

4.2.2规范化排污口

本项目第三阶段共设有12根23米高的排气筒,在排气筒附近醒目处设有 环境保护图形标志牌,各个排气筒均设有采样口。

9#排气筒照片

11#排气筒照片

10#排气筒照片

12#排气筒照片

17#排气筒照片

18#排气筒照片

19#排气筒照片

20#排气筒照片

21#排气筒照片

23#排气筒照片

22#排气筒照片

24#排气筒照片

厂区内未设置污水排口,污水由放流池内通过泵提升至架空管道后外排。

污水排口标志牌

全厂设4个雨水排口,配备闸阀和标志牌,并安装雨水监控系统。

1#雨水排口照片

2#雨水排口照片

3#雨水排口照片

4#雨水排口照片

4.3 环保设施投资及"三同时"落实情况

本项目第三阶段环保设施实际投资情况见表4.3-1,本项目第三阶段环保设施设计单位、环保设施施工单位均为南通泰恩建设工程有限公司,项目环保"三同时"落实情况见表4.3-2。

表4.3-1 项目第三阶段环保设施实际投资情况表

序号	项目	投资 (万元)
1	废气处理设施	8000
2	废水处理设施	/
3	噪声处理	30
4	固废处理	250
5	事故应急处理措施、清污分流、排污口规 范化设置	/
	合计	8280
	第三阶段实际总投资	800000
	环保投资占第三阶段总投资比例	1.03%

表4.3-2 项目第三阶段环保"三同时"落实情况表

类别	污染源	污染物	环保设施环评 初步设计	处理效果、 执行标准或拟达要求	实际建设情况
废气	卷取废气	颗粒物	7套湿式除尘 系统+7根30米 高(5#~6#、 9#~13#)排气 筒	准》(DB32/4041-2021)	卷取废气经12套 湿式除尘系统+12 根23米高 (9#~12#、 17#~24#)排气筒 排放
废水	生活污水、 生产废水	pH、 COD、 BOD、 SS、氨 氦、TN、 TP、 AOX、二 噁英	污水处理站	《制浆造纸工业水污染物排放标准》(GB3544-2008)表2"造纸企业"水污染物排放限值及《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准	依托现有污水处 理站1座
噪声	生产、公辅 设备	$L_{ m aeq}$	减振、隔声、 消声	《工业企业厂界环境噪声 排放标准》(GB12348- 2008)中3类标准	厂界达标
固废	危险 一般工		委托有资质单 位处理 回收出售	设置一座一般固废仓库, 一座危废仓库,零排放	依托现有设置一 座一般固废仓

	生活垃圾		由环卫部门处 理		库,一座危废仓 库,零排放
事故应急措施		事故应急池有限容积为5500m³。 (1)设立应急组织机构、人员,明确各单位、人员的职责。 (2)制定事故应急响应系统和应急行动方案,设立报警、通讯系统,与当地有关部门和周边企业民众保持联络通畅,并能与有关部门有效配合。 (3)对事故现场进行跟踪事故监测。 (4)定期进行应急培训。		依托现有事故应 急池,容积满足 要求	
环境管理(机构、监 测能力等)		安环部门,配备专职环保工作人员1-2名		己建设	
清污分流、排污口规 范化设置(流量计、 在线监测仪等)		测平台; 废水排放 志牌;废 质氨氮在	附近地面醒目口设置阀门,持 小排口已安装力 线监测仪、水质 流测仪、在线PH	样、监测的采样口和采样出处设置环保图形标志牌; 处设置环保图形标志牌; 非放口附近树立环保图形构 k质CODcr在线监测仪、对 反总氮在线监测仪、水质总 似和流量计;雨水排口已 监控系统。	已规范化设置排口并树立标志 牌;在线监控设备已安装并通过
总量-	总量平衡具体方案 大气、废水污染物排放总量在如东县范围内平衡		总量达标		
卫生队	防护距离设置		,, ,	n卫生防护距离,以污水处 00m卫生防护距离	工生防护距离内 无环境保护敏感 目标

5 环境影响报告书主要结论与建议及其审批部门审批决定

5.1 环境影响报告书主要结论与建议

根据《金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书》中摘录的主要结论如下表。

表5.1-1 环境影响报告书主要结论一览表

项目	结论
废水	拟建项目尾水与园区污水处理厂实行同一标准统一管理,并实时在线监测,通过园区尾水排海管道深海排放。拟建项目生产废水、生活废水和初期雨水总量约为15529.58m³/d,经厂区污水处理站处理后,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准、《制浆造纸工业水污染物排放标准》(GB3544-2008)表2"造纸企业"水污染物排放限值。按照苏海环(2010)20号文件规定,洋口港污水处理排海工程一期尾水排海规模为5万吨/天,已于2015年建成投运。按照项目分期实施规模,可充分保证项目排放需求。具体内容见附件江苏如东洋口经济开发区管理委员会《关于项目尾水排放问题的复函》。拟建项目排放污水中不含重金属和对污水处理厂生化处理产生严重抑制和影响成份的因子,生产过程中产生的固体废物严格按照固体废物处理要求进行处理处置,工艺危险废物全部委托有资质单位处理,严禁危废等混入污水稀释排入污水管网。因此,拟建项目产生的生活用纸废水、初期雨水和生活污水经收集后送至厂区污水处理站处理达到园区污水处理厂排放标准后依托园区污水处理厂排海管道排海是可行的。
废气	①拟建项目处于不达标区,大气评价等级为二级。拟建项目有组织排放的各类污染物对周边大气环境造成的影响较小,下风向最大质量浓度占标率为8.72%;无组织排放的各类污染物影响贡献均小于标准限值,下风向最大质量浓度占标率为6.97%。有组织和无组织排放的污染物最大浓度占标率≤100%。因此,拟建项目环境影响可接受。 ②卫生防护距离:拟建项目应在造纸车间外设置50m卫生防护距离,在废水处理厂外设置100m卫生防护距离,卫生防护距离范围内无居民等敏感目标,今后也不得新建环境敏感目标。
噪声	拟建项目厂界各测点昼间噪声预测值为55.3~56.5dB(A)之间,夜间噪声预测值为48.8~49.7dB(A)之间,满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。因此,拟建项目建成后声环境影响较小,不会出现噪声扰民现象。
固废	拟建项目产生的各种固体废弃物均得到有效利用或处置,不会造成二次污染。
地下水	正常状况下,污染物无超标范围,拟建项目正常工况对地下水无影响。在非正常工况发生废污水或污染物渗漏情况下,污染物对地下水的影响范围和距离大小主要取决于污染物渗漏量的大小、污染因子的浓度、地下水径流的方向、水力梯度、含水层的渗透性和富水性,以及弥散度的大小。由上述预测结果可知,废水处理区污染物泄漏后,10年内污染物最大超标距离44.5m左右,最大超标范围1253.8m²。 由此可知,污染物长期持续泄漏会对地下水造成影响,但整体影响范围主要集中在地下水径流的下游方向。污染物在地下水对流作用的影响下,污染中心区域向下游方向迁移,同时在弥散作用的影响下,污染羽的范围向四周扩散。拟建

项目周边无地下水饮用水源,环境保护目标在污染物最大迁移距离之外,不会受 拟建项目的影响。结合有效监测、防治措施的运行,拟建项目废水对地下水环境 的影响基本可控。 考虑到地下水环境监测及保护措施,在厂区下游会设有地下水监测点,一旦 监测到污染物超标,监测点监测信息会在较短时间内有响应,会及时启动应急预 案,进行污染物迁移的控制和修复,可以有效控制污染物的迁移。所以,上述非 正常状况条件一般不会在极端非正常工况下运行10年。综上,污染物一旦发生渗 漏,运营期内对周围地下水影响范围较小。 拟建项目涉及易燃物质主要为生活纸及纸粉,这些物质分布在项目中的生产 和储存单元, 经辨识整个厂区不构成重大危险源, 需要从工艺技术、过程控制、 消防设施和风险管理上严格要求,以减缓拟建项目的环境风险。拟建项目最大可 环境 信事故有: 生活纸仓库火灾次生/伴生CO污染事故, 经预测最大可信事故下的扩散 风险 的环境风险物质会对厂内职工的健康造成较大影响,事故发生后需及时启动突发 环境事件应急预案,对下风向短时间接触容许浓度范围内的职工进行疏散,同时 迅速进行消防、堵漏作业,将环境风险降至最低。 环评单位通过调查、分析和综合评价后认为: 拟建项目符合国家和地方有关 环境保护法律法规、标准、政策、规范及相关规划要求,项目所在区域规划环评 尚未获得批复,不符合《关于切实加强风险防范严格环境影响评价管理的通知》 (环发[2012]98号): 拟建项目生产过程中遵循清洁生产理念, 所采用的各项污染 防治措施技术可行、经济合理,能保证各类污染物长期稳定达标排放;预测结果 表明项目所排放的污染物对周围环境和环境保护目标影响较小;通过采取有针对 结论 性的风险防范措施并落实应急预案,项目的环境风险可以防控。建设单位按照程 序开展了公众参与,公示期间未收到反馈意见。综上所述,在完成并符合区域规 划环评,需配套的码头、热电及污水管网工程同步建成投运,落实报告书中的各 项环保措施以及符合各级环保主管部门管理要求的前提下,从环保角度分析,拟 建项目的建设具有环境可行性。同时,拟建项目在设计、建设、运行全过程中还 必须满足消防、安全、职业卫生等相关管理要求,进行规范化的设计、施工和运 行管理。

5.2 审批部门审批决定

根据《关于金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书的批复》(如东县行政审批局,东行审环[2019]70号,2019年6月27日),本项目环评批复要求如下表。

表 5.1-2 环评批复要求一览表

序号	结论
	严格按照"清污分流、雨污分流、一水多用"的原则,对各类废水进行分类、分质处理。该项目施工期产生的废水主要为施工废水和生活污水。你公司须对施工单位进行有效监督,严禁施工废水、生活污水直排外环境,须对其进行有效处理后回用或纳入园区污水管网处理。该项目运营期产生的废水主要为高浓除渣工段产生的浆渣废水、压力筛过滤产生的浆渣废水、造纸多余白水排水、初期雨水及生活污水。该项目产生的工艺废水、初期雨水和生活污水经有效收集后一并排至厂内废水处理站进行处理,达到《制浆造纸工业水污染物排放标准》

	(GB3544-2008)表2"造纸企业"水污染物排放限值及《城镇污水处理厂污染物排
	放标准》(GB18918-2002)一级A标准后,依托洋口港经济开发区污水处理厂排海
	管道排海。
	该项目施工期废气主要来源于施工机械及运输车辆所排放的废气、施工场地
	扬尘等。你公司须加强施工过程管理,采取合理可行的措施,减轻施工期间无组
	织排放废气污染及扬尘污染。该项目运营期产生的废气主要为生活用纸原纸生产
	过程中纸卷卷取工序和复卷工序产生的含粉尘废气、厂区废水处理站无组织排放
	的复、硫化氢等臭气。纸卷卷取各工序产生的废气分别通过湿式除尘设施处理达
	标后,分别经13座30m高排气筒(P1-P13)排放;复卷工序产生的废气分别通过湿
	本方, 分别经13座30III高排(同《F1-F13》排放; 复卷工序) 生的废《分别通过础 式除尘设施处理达标后, 分别经8座 30m高排气筒(P14-P21)排放。
	该项目造纸车间颗粒物排放执行《大气污染物综合排放标准》(GB16297-
	1996)表2二级标准,颗粒物厂界监控点浓度执行《大气污染物综合排放标准》
	(GB16297-1996) 无组织排放监控浓度限值; 氨、硫化氢等臭气执行《恶臭污染
	物排放标准》(GB14554-93)表1二级标准;同时你公司须加强生产管理,采取有
	效措施控制生产过程和废水处理过程中的无组织排放废气污染。
	该项目施工期须合理安排施工时间,施工阶段的建筑施工场界噪声须符合《建筑英工艺界开发照亮排放标准》(GP12522 2011)中央关系统,作为司领人
	《建筑施工场界环境噪声排放标准》(GB12523-2011)中相关标准。你公司须合
	理安排厂区总体平面布局,选用低噪声设备,高噪声源应尽量远离厂界,并采取
	吸声隔声、降噪减振等有效措施,确保厂界噪声达《工业企业厂界环境噪声排放 与数数。(CD12249,2009),中数2类与数量不数量
	标准》(GB12348-2008)中的3类标准且不扰民。
	该项目施工期建筑垃圾、生活垃圾须妥善处置或回收利用。营运期按"减量化、资源化、无害化"的处置原则,落实各类固体废物的收集、处置和综合利用。
	花、贞族化、尤苦化 的处量原则,洛英谷关固体及初的权案、处量和综合利用。 措施,按规范要求建设专门的危废堆放场所。按要求对一般固废进行回收利用或
	情心, 按风池安水建设专门的池废堆成场所。按安水内
四	项目投产后厂区废水处理站产生的污泥须暂按危险废物从严管理,在项目竣
	工环保验收前按照国家规定的危险废物鉴别标准和鉴别方法开展危险特性鉴定,
	若鉴定属于危险废物,须根据其主要有害成分和危险特性确定所属废物类别,并
	有鉴定属了危险废物,须依始兴工女育古成为和危险特性确定//周波杨昊///,并 按代码"900-000-××"(××为危险废物类别代码)进行归类管理,若鉴定不属于
	危险废物,按一般固废的要求进行回收利用或综合治理。
	按照《江苏省排污口设置及规范化整治管理办法》要求,规范设置排污口,
	设置排口标志牌,排气筒预留监测采样口,按照《江苏省污染源自动监控管理暂
五.	行办法》及造纸行业技术规范等相关要求,安装污水流量计、氨氮、COD监测仪
	等在线监控装置及其配套设施,并根据南通市如东生态环境局要求进行联网。
	你公司须认真落实《报告书》中提出的各项事故应急防范措施,严格按照环
六	境风险管理的有关规定制定环境事故应急预案,设置事故应急池,配备相应装备
	并定期进行演练,防止因事故性排放污染环境。
	该项目建成后,污染物年新增排放总量初步核定为:废水污染物排放量(排
	海量): 废水量≤5280058t/a、COD≤163.68t/a.、SS ≤ 36.96t/a、BOD≤52.80t/a、氨
七	氮≤5.54t/a、总磷≤0.63t/a、总氮≤6.07t/a、AOX≤0.84t/a、二嗯英≤3.94×10 ⁻¹⁰ t/a;废
	气污染物排放量:粉尘≤87.24t/a;固废排放量为0。
11	该项目建成后,你单位应按照国务院环境行政主管部门规定的标准和程序,
八	对配套建设的环境保护设施自行组织验收。
	本批复自下达之日起五年内有效,你公司必须严格按照环评批准的规模、工
九	艺等组织实施,项目的性质、规模、地点、采用的工艺或污染物纺织措施发生重
	大变化的,应当重新报批项目的环境影响评价文件。建设项目的环境影响评价文

件自批准之日起超过五年,方决定项目开工建设的,其环境影响评价文件 应当报原审批部门重新审核。

5.3 环评批复落实情况对照

本项目环评批复落实情况对照见下表。

表 5.1-3 环评批复落实情况对照表

环评批复

落实情况

严格按照"清污分流、雨污分流、一水多 用"的原则,对各类废水进行分类、分质处 理。该项目施工期产生的废水主要为施工废水 和生活污水。你公司须对施工单位进行有效监 督,严禁施工废水、生活污水直排外环境,须 对其进行有效处理后回用或纳入园区污水管网 处理。该项目运营期产生的废水主要为高浓除 渣工段产生的浆渣废水、压力筛过滤产生的浆 渣废水、造纸多余白水排水、初期雨水及生活 污水。该项目产生的工艺废水、初期雨水和生 活污水经有效收集后一并排至厂内废水处理站 进行处理, 达到《制浆造纸工业水污染物排放 标准》(GB3544-2008) 表2"造纸企业"水污 染物排放限值及《城镇污水处理厂污染物排放 标准》(GB18918-2002)一级A标准后,依托 洋口港经济开发区污水处理厂排海管道排海。

已实行"雨污分流、清污分流", 高浓除渣工段产生的浆渣废水、压力筛 过滤产生的浆渣废水、造纸多余白水排 水及生活污水经污水处理站处理后依托 洋口港经济开发区污水处理厂排海管道 排海。验收监测结果表示,验收监测期 间,各污染物排放符合相关标准要求。

该项目运营期产生的废气主要为生活用纸原纸生产过程中纸卷卷取工序和复卷工序产生的含粉尘废气、厂区废水处理站无组织排放的氨、硫化氢等臭气。纸卷卷取各工序产生的废气分别通过湿式除尘设施处理达标后,分别经13座30m高排气筒(P1-P13)排放;复卷工序产生的废气分别通过湿式除尘设施处理达标后,分别经8座30m高排气筒(P14-P21)排放。

该项目造纸车间颗粒物排放执行《大气污染物综合排放标准》(GB 16297-1996)表2二级标准;颗粒物厂界监控点浓度执行《大气污染物综合排放标准》(GB16297-1996)无组织排放监控浓度限值;氨、硫化氢等臭气执行《恶臭污染物排放标准》(GB14554-93)表1二级标准;同时你公司须加强生产管理,采取有效措施控制生产过程和废水处理过程中的无组织排放废气污染。

施工 已落实环评及批复要求,合理布局 工场 并采取隔声、降噪等措施。验收监测结 中 果表明:验收监测期间,厂界噪声符合 面布 《工业企业厂界噪声排放标准》

该项目施工期须合理安排施工时间,施工阶段的建筑施工场界噪声须符合《建筑施工场界噪声须符合《建筑施工场界环境噪声排放标准》(GB12523-2011)中相关标准。你公司须合理安排厂区总体平面布

除尘系统处理达标后,分别经12根23m 高排气筒(9#~12#、17#~24#)排放。对照《制浆造纸建设项目重大变动清单(试行)》(环办环评[2018]6号),排气筒个数增加、高度减少均不属于重大变动,可纳入竣工环境保护验收管理,同时根据验收监测结果表示,验收监测期间,各污染物排放符合相关标准要求。

己按照环评要求设置废气处理装

置, 卷取工序产生的废气通过12套湿式

局,选用低噪声设备,高噪声源应尽量远离厂界,并采取吸声隔声、降噪减振等有效措施,确保厂界噪声达《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准且不扰民。

(GB12348-2008) 中的3类标准。

该项目施工期建筑垃圾、生活垃圾须妥善处置或回收利用。营运期按"减量化、资源化、无害化"的处置原则,落实各类固体废物的收集、处置和综合利用措施,按规范要求建设专门的危废堆放场所。按要求对一般固废进行回收利用或综合治理,危险废物委托有资质单位处置,生活垃圾由环卫部门统一清运。

项目投产后厂区废水处理站产生的污泥须暂按危险废物从严管理,在项目竣工环保验收前按照国家规定的危险废物鉴别标准和鉴别方法开展危险特性鉴定,若鉴定属于危险废物,须根据其主要有害成分和危险特性确定所属废物类别,并按代码"900-000-××"(××为危险废物类别代码)进行归类管理,若鉴定不属于危险废物,按一般固废的要求进行回收利用或综合治理。

已按照环评及批复要求落实,一般 固废回收出售,危险废物须委托有资质 单位处置,生活垃圾由环卫部门统一清 运。污泥经鉴别为一般固废,按照一般 固废委托处置。

按照《江苏省排污口设置及规范化整治管理办法》要求,规范设置排污口,设置排口标志牌,排气筒预留监测采样口;按照《江苏省污染源自动监控管理暂行办法》及造纸行业技术规范等相关要求,安装污水流量计、氨氮、COD监测仪等在线监控装置及其配套设施,并根据南通市如东生态环境局要求进行联网。

原环评及批复中均未明确雨水排口的位置及数量,公司已按照要求在纸厂设置了4个雨水排口,并安装雨水检测系统。

已按照《江苏省排污口设置及规范 化整治管理办法》的要求,在规范设置 排污口,设置排口标志牌,排气筒预留 监测采样口。污水排口已安装水质 CODcr在线监测仪、水质氨氮在线监测 仪、水质总氮在线监测仪、水质总磷在 线监测仪、在线PH仪和流量计,已联 网,并通过了水污染源在线监测系统自 主验收。

你公司须认真落实《报告书》中提出的各项事故应急防范措施,严格按照环境风险管理的有关规定制定环境事故应急预案,设置事故应急池,配备相应装备并定期进行演练,防止因事故性排放污染环境。

已落实《报告表》中提出的各项事故应急防范措施,已按照环境风险管理的有关规定制定环境事故应急预案,已于2022年6月30日取得了《企业事业单位突发环境事件应急预案备案表》(详见附件13)。环评中要求设置1座4000m³事故应急池,本项目已设置1座5500m³事故应急池,能够满足事故废水收集。同时配备相应装备并定期进行演练。

由于现行应急预案未包括本次验收内容,故公司正在开展应急预案修编报

	备工作。
该项目建成后,污染物年新增排放总量初步核定为:废水污染物排放量(排海量):废水 量 ≤5280058t/a 、 COD≤163.68t/a 、 SS≤36.96t/a、BOD≤52.80t/a、氨氮≤5.54t/a、总磷≤0.63t/a、总氮≤6.07t/a、AOX≤0.84t/a、二嗯英≤3.94×10 ⁻¹⁰ t/a;废气污染物排放量:粉尘≤87.24t/a;固废排放量为0。	第三阶段总量已达标。

6验收执行标准

6.1 废气排放执行标准

项目卷取工序产生的颗粒物原环评排放执行《大气污染物综合排放标准》(GB16297-1996)中二级标准和无组织排放监控浓度限值标准,本次验收卷曲工序产生的颗粒物排放执行《大气污染物综合排放标准》(DB32/4041-2021)表1颗粒物标准和表3中标准,污水处理站无组织排放的氨气、硫化氢排放限值执行《恶臭污染物排放标准》(GB14554-93)中表1相关标准,具体见表6.1-1。

表6.1-1-1 原环评中废气污染物排放标准

污染物	最高允许 排放浓度	最高允许技		无组织排放监控 浓度限值	排放标准
17270	(mg/m^3)	排气筒高度 (m)	二级	(mg/Nm^3)	JTF/JX/4/VI任
颗粒物	120	15	3.5	1.0 (周界外浓度 最高点)	《大气污染物综合 排放标准》 (GB16297-1996)
氨气	/	/	/	1.5	《恶臭污染物排放
硫化氢	/	/	/	0.06	标准》(GB14554- 93)

表6.1-1-2 本次验收废气污染物排放标准

污染物	最高允许 排放浓度 (mg/m³)	最高允许排放 速率(kg/h)	无组织排放监控 浓度限值 (mg/Nm³)	排气筒 高度	排放标准
颗粒物	20	1	0.5(边界外浓度 最高点)	不低于 15m	《大气污染物综 合排放标准》 (DB32/4041- 2021)
氨气	/	/	1.5	/	《恶臭污染物排
硫化氢	/	/	0.06	/	放标准》(GB 14554-93)

6.2 废水排放执行标准

项目产生的生产废水及生活污水,经现有污水处理站处理后洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海,排放执行尾水排放执行《城镇污水处理厂污染物排放标准》(GB18918-2002)表1一级A标准,其中,二噁英、AOX、总氮及单位产品基准排水量执行《制浆造纸工业水污染物排放标准》(GB3544-2008)表2"造纸企业"水污染物排放限值,具体见表6.2-1。

		P400= = //2014 (47)4 (47)	• •
项目	单位	《城镇污水处理厂污染物排放标准》(GB18918-2002)中一	制浆造纸工业水污染物 排放标准(GB3544-
		级A标准	2008)表2标准
pH值	无量纲	6~9	/
COD	mg/L	50	/
SS	mg/L	10	/
氨氮	mg/L	5	/
总磷	mg/L	0.5	/
BOD ₅	mg/L	10	/
总氮	mg/L	/	12
AOX	mg/L	/	12(车间排口)
二噁英	/	/	30pgTEQ/L(车间排口)
单位产品基 准排水量	t/t	/	20

表6.2-1 废水污染物排放标准

参考《江苏省重点行业工业企业雨水排放环境管理办法(试行)》(苏污防攻坚指办(2023)71号),雨水受纳水体执行《地表水环境质量标准》(GB3838-2002)Ⅲ类标准,故雨水中COD排放执行《地表水环境质量标准》(GB3838-2002)Ⅲ类标准(COD≤20mg/L),SS排放执行《2022年洋口港经济开发区、长沙镇"水质达标决战年"实施方案》(港管发[2022]20号)中要求(SS≤30mg/L)。

6.3 噪声排放执行标准

项目营运期厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准。具体标准见下表。

 执行标准
 标准值 dB(A)

 基间
 夜间

 《工业企业厂界环境噪声排放标准》 (GB12348-2008) 3类标准
 65
 55

表6.3-1 工业企业厂界环境噪声排放标准

6.4 固体废物

固体废物执行《中华人民共和国固体废物污染环境防治法》和《江苏省固体废物污染环境防治条例》。一般固废执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)。危险废物贮存、处置执行《危险废物贮存污染控制标准》(GB18597-2023)、《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)及《关于印发江苏省固体废物全过程环境监管工作意见的通知》(苏环办[2024]16号)中相关要求。

6.5 总量控制指标

根据《关于金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书的批复》(东行审环[2019]70号,如东县行政审批局,2019年6月27日)本项目总量控制指标见表6.5-1。

火00.1 四重压制排列					
种类	污染物名称	全厂总量控制指标 (t/a)	第三阶段建成后全厂总量控制 指标(t/a)		
废气	颗粒物	87.24	46.93(第三阶段) [©]		
	废水量m³/a	5280058	5280058		
	COD	163.68	163.68		
	SS	36.96	36.96		
废水	氨氮	5.54	5.54		
及小	总磷	0.63	0.63		
	BOD ₅	52.8	52.8		
	总氮	6.07	6.07		
	AOX	0.84	0.84		

表6.5-1 总量控制指标

	二噁英	1.8×10 ^{-8©}	1.8×10 ^{-8©}
	一般工业固废	0	0
固废	危险废物	0	0
	生活垃圾	0	0

注: ①原环评全厂共有13条6万吨造纸生产线、8条复卷生产线,单条6万吨造纸生产线卷取废气中颗粒物排放量为5.96t/a,单条复卷生产线复卷废气中颗粒物排放量为1.22t/a,全厂废气颗粒物排放量合计为87.24t/a。目前项目第三阶段建成12条造纸生产线,10条3万吨造纸生产线、2条6万吨造纸生产线,合计42万吨,约为全厂产能的53.8%,复卷生产线未建,则项目第三阶段废气颗粒物总量控制指标为46.93t/a。

②原环评全厂排放废水中二噁英排放浓度为 7.47×10^{-11} mg/L(0.0747pgTEQ/L),排放总量为 3.94×10^{-10} t/a。由于环境本底及原料浆板影响,公司2024年第一季度例行监测报告中二噁英排放浓度最大值为3.4pgTEQ/L,远超环评预估浓度,据此环评编制单位出具了废水中二噁英排放总量重新核定的说明(详见附件10),重新核定后全厂废水中二噁英的排放浓度为3.4pgTEQ/L,排放总量为 1.8×10^{-8} t/a。

7验收监测内容

7.1 环境保护设施调试运行效果

通过对各类污染物达标排放及各类污染治理设施去除率的监测,来说明环保设施调试效果,具体监测内容如下:

7.1.1废水

废水监测点位、项目和频次见表7.1-1、图7.1-1。

表7.1-1 废水监测点位、项目和频次

类别	监测点位	监测编号	监测因子	监测频次
	车间排口	S0	pH、COD、BOD、SS、 氨氮、TN、TP、AOX、 二噁英	4次/天,2天
	污水处理站进口 (污水调节池)	S 1	pH、COD、BOD、SS、 氨氮、TN、TP	4次/天,2天
	斜网出口	S2	pH、COD、BOD、SS	4次/天,2天
	初沉池出口	S 3	pH、COD、BOD、SS、 氨氮、TN、TP	4次/天,2天
废水	A/O池出口	S4	pH、COD、BOD、SS、 氨氮、TN、TP	4次/天,2天
	二沉池出口	S5	pH、COD、BOD、SS、 氨氮、TN、TP	4次/天,2天
	三沉池出口	S 6	pH、COD、BOD、SS、 氨氮、TN、TP、AOX	4次/天,2天
	放流池	S7	pH、COD、SS、氨氮、 总磷、总氮、石油类、动 植物油	4次/天,2天
雨水	厂区雨水排口	S8-S11	pH、COD、SS	1次/天,2天

备注: 监测期间, 天气为晴, 故未对雨水进行监测。

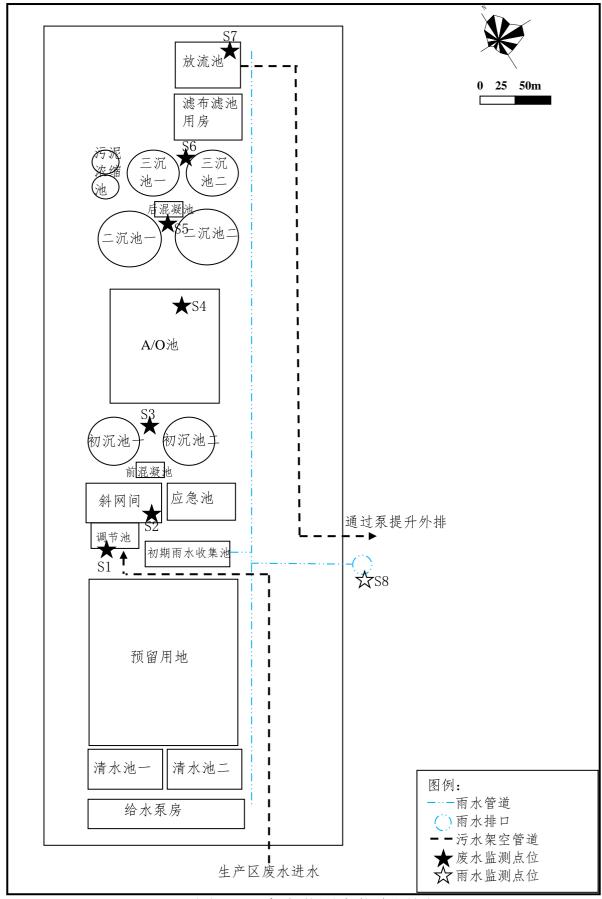


图7.1-1 废水监测点位布置图

7.1.2废气

7.1.2.1 有组织排放

废气监测点位、项目和频次见表7.1-2、图7.1-2。

表7.1-2 废气监测点位、项目和频次

类别	废气名称	监测点位	监测编号	监测因子	监测频次
废气	卷取废气	9#~12#、 17#~24#排气筒	G9~G12、 G17~G24	出口低浓度颗 粒物	3次/天,2 天

备注:由于废气处理设施进口处弯管较多,不能满足上三下六的要求(采样口距弯头、阀门、变径管下游方向小于6倍直径,距弯头、阀门、变径管上游方向不小于3倍直径),不具备开孔取样的条件,因此排气筒均只对废气出口进行采样。

废气处理设施进口处照片

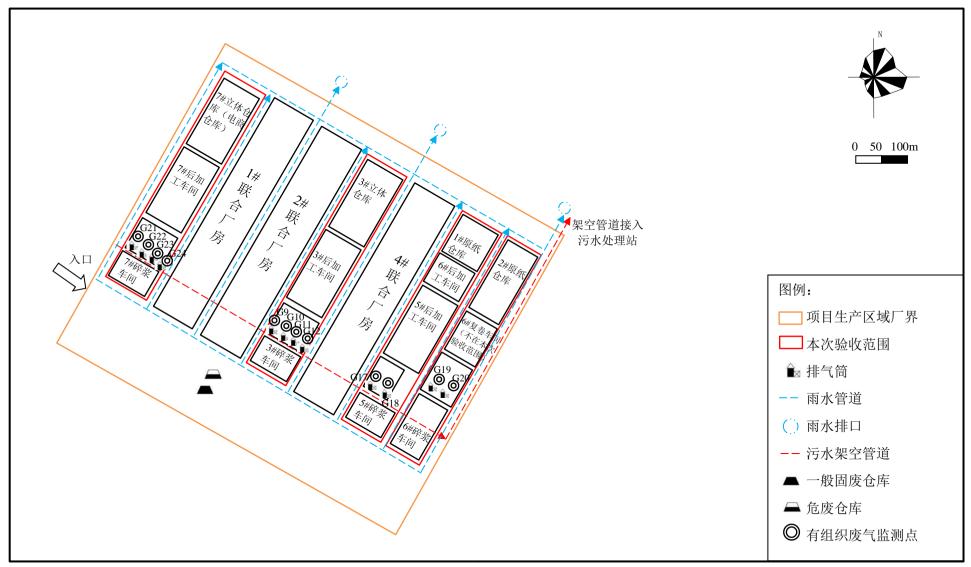


图7.1-2 有组织废气监测点位布置图

7.1.2.2 无组织排放

废气监测点位、项目和频次见表7.1-3、图7.1-3。

表7.1-3 废气监测点位、项目和频次

类别	无组织排放源	监测点位	监测编 号	监测因子	监测频次
废气	造纸车间、污水处理 站	厂界上风向设置1个 参照点、下风向各设 置3个监测点	G1~ G4	颗粒物、氨、硫化 氢	3次/天,2天
	垍	造纸车间外1个点, 共4个点	G5~G8	颗粒物	3次/天,2天

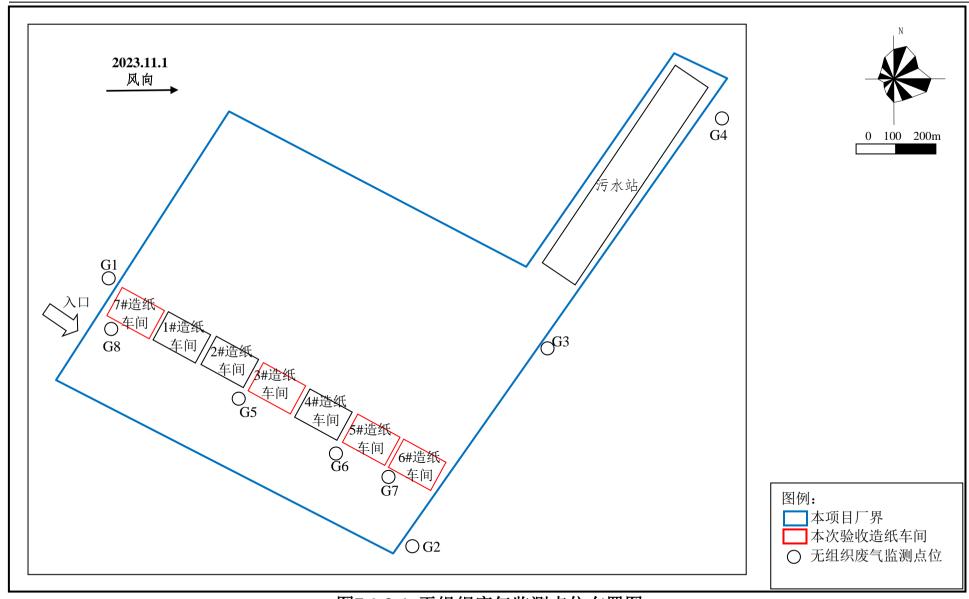


图7.1-3-1 无组织废气监测点位布置图

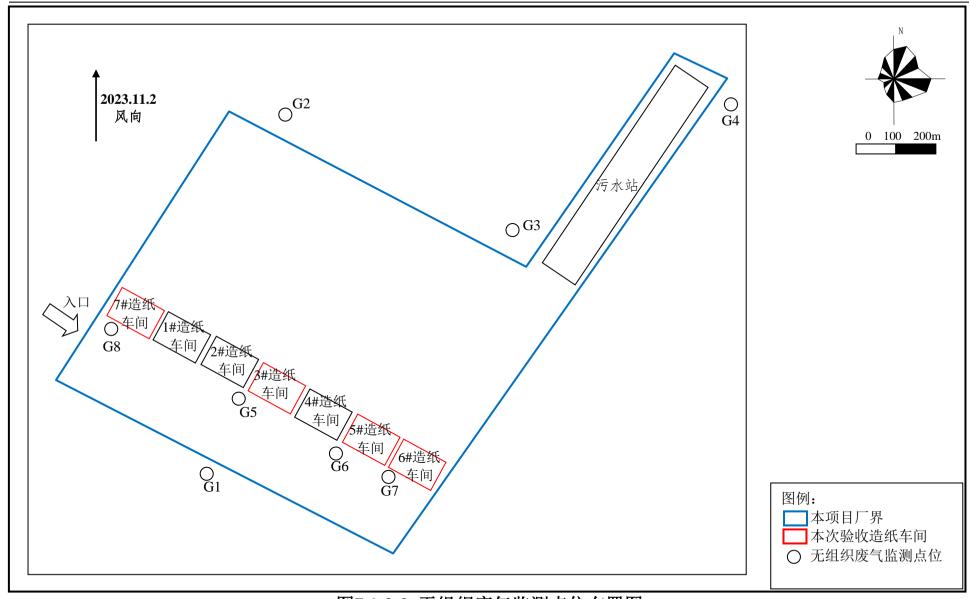


图7.1-3-2 无组织废气监测点位布置图

7.1.3厂界噪声监测

根据声源分布和厂界情况,本次监测共布设8个厂界噪声监测点。监测项目和频次见表7.1-4、图7.1-4。

表7.1-4 厂界噪声监测点位、项目和频次

污染种类	测点位置	监测项目	监测频次
厂界噪声	 纸厂厂界东侧 (N1) 纸厂厂界南侧 (N2) 纸厂厂界西侧 (N3) 纸厂厂界北侧 (N4) 水厂厂界东侧 (N5) 水厂厂界南侧 (N6) 水厂厂界西側 (N7) 水厂厂界北側 (N8) 	等效连续 (A)声级	昼间、夜间各1次,共3天

图 7.1-4 噪声监测点位示意图

8 质量保证和质量控制

本次监测的质量保证严格按照《建设项目竣工环境保护验收技术指南 污染影响类》及相关规范要求合理设置监测点位,确定监测因子与频次,以保证监测数据具有科学性和代表性。

监测人员经过考核并持有合格证书,所有监测仪器经过计量部门检定并在 有效期内,现场监测仪器使用前后经过校准。监测数据实行三级审核。

8.1 监测分析方法

本项目监测分析方法见下表。

表 8.1-1 监测分析方法

监测项目	监测分析方法	备注
рН	《水质 pH 值的测定 电极法》HJ 1147-2020	
化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》HJ 828-2017	
悬浮物	《水质 悬浮物的测定 重量法》GB 11901-1989	
氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535-2009	
总磷	《水质 总磷的测定 钼酸铵分光光度法》GB 11893-1989	
五日生化需氧	《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》HJ	废水
量	505-2009	及小
总氮	《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》	
心炎	НЈ636-2012	
AOX	《水质可吸附有机卤素(AOX)的测定 微库仑法》(GB/T	
	15959) 《水质二嗯英类的测定、同位素稀释高分辨气相色谱-高分辨	
二噁英	质谱法》(HJ 77.1-2008)	
低浓度颗粒物	《固定污染源废气 低浓度颗粒物的测定 重量法》HJ 836-2017	
六 日 沙 旺水 小	《环境空气 总悬浮颗粒物的测定 重量法》及其修改单(生态	
总悬浮颗粒物	环境部公告2018年第31号公告)GB/T 15432-1995	
气点	《环境空气和废气 氨的测定 纳氏试剂分光光度法》 HJ 533-	废气
氨气	2009	
なりを	亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版	
硫化氢	国家环境保护总局 2003年) 3.1.11.2	
工业企业 厂界环境噪声	工业企业厂界环境噪声排放标准 GB 12348-2008	噪声

8.2 监测仪器

本项目所涉及的监测仪器见表8.2-1。

表8.2-1 监测仪器

		• • • • • • • • • • • • • • • • • • • •
名称	型号	资产编号
万分之一天平	PX223ZH/E	TL-0058、TL-0058
电热鼓风干燥箱	DHG-9240A	TL-0049、TL-0048
标准COD消解器	HCA-102	TL-0079、TL-0080
手提式压力蒸汽灭菌器	DSX-280B	TL-0046、TL-0014
紫外可见光分光光度计	T6新世纪	TL-0073、TL-0071、TL-0072
生化培养箱	LRH-250	TL-0097
生化培养箱	LRH-70	TL-0050
溶解氧仪	JPSJ-605F	TL-0056
多参数测量仪	SX736	TL-0215
笔式酸度计	pH-100	TL-0140
岛津分析天平	AVW120D	TL-0059
低浓度称量恒温恒湿设备	NVN-800S	TL-0074
温湿度计	TES-1360A	TL-0095、TL-0189、TL-0192
多参数测量仪	SX736	TL-0215
智能烟尘烟气分析仪	EM-3088	TL-0016、TL-0285
自动烟尘/气测试仪	崂应3012H	TL-0098、TL-0099
空盒气压表	DYM3型	TL-0094
手持式风速风向仪	FYF-1	TL-006
环境空气综合采样器	崂应2050型	TL-0100、TL-0101、TL-0102
智能综合大气采样器	EM-2068A	TL-0253
智能大气/颗粒物综合采样器	JF-2031	TL-0176、TL-0177、TL-0178、TL-0179
多功能声级计	AWA5688	TL-0019
声校准器	AWA6022A	TL-0021

8.3 人员能力

现场采样人员及实验室分析人员均通过实验室内部上岗证培训考试,并取得了相应岗位的上岗证。

8.4 水质监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照《地表水和污水监测技术规范》(HJ/T91-2002)、《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T373-2007)以及各监测项目标准分析方法规定的质量控制要求。

表8.4-1 废水污染物质控统计表

	江苏添蓝检测技术服务有限公司										
				制信息	7						
		;	样品精密度质	质量控制	报告						
样品 名称	采样日期	样品编号	检测项目	单位	平行村	羊结果	相对偏 差%	参考质量控 制%			
		1TL1627SF001			238	236	0.4	≤10			
		1TL1627SF008			432	428	0.5	%10			
		1TL1627SF013			68	67	0.7	≤15			
		1TL1627SF022			56	54	1.8	//13			
		1TL1627SF026			364	366	0.3	≤10			
		1TL1627SF031			282	280	0.4	%10			
		1TL1627SF035	化学需氧	mg/L	27	27	0.0	≤20			
		2TL1627SF001	量		232	233	0.2	≤10			
		2TL1627SF008			428	430	0.2	≪10			
		2TL1627SF013			72	70	1.4	≤15			
		2TL1627SF022			58	60	1.7	%13			
	2022 11 01	1TL1627SF026			356	358	0.3	≤10			
废水	2023.11.01、 2023.11.06	2TL1627SF031			290	286	0.7	~10			
	2023.11.00	2TL1627SF035			26	27	1.9	≤20			
		1TL1627SF001			15.1	152	0.3				
		1TL1627SF008			16.4	16.2	0.6				
		1TL1627SF018			5.39	5.33	0.6				
		1TL1627SF021	氨氮(以	ma/I	4.69	4.63	0.6	≤10			
		2TL1627SF001	NH)	mg/L	16.6	16.8	0.6	≪10			
		2TL1627SF008			17.9	17.8	0.3				
	-	2TL1627SF018			5.51	5.46	0.5				
		2TL1627SF021			4.83	4.77	0.6				
		1TL1627SF001	01		21.0	21.2	0.5				
		1TL1627SF014	总氮(以 N 计)	mg/L	10.7	10.9	0.9	€5			
		1TL1627SF015	1101/		10.5	10.7	0.9				

		ΓL1627SF001	:			23.6	24.0	0.	8	
	25									
		ΓL1627SF014				11.4	11.1	1.3	3	
	27	ΓL1627SF015	;			12.4	12.3	0.	4	
	17.	ΓL1627SF001				40.5	46.1	6.	5	
	17.	ΓL1627SF001				42.5	45.3	3.	2	
	17.	ΓL1627SF002	2			44.9	45.1	0.	2	
	17.	ΓL1627SF002	2			47.7	44.7	3.	2	
	17.	ΓL1627SF003	;			47.1	49.7	2.	7	
	17	ΓL1627SF003	3			46.7	44.1	2.	9	
	17.	ΓL1627SF031				44.9	41.9	3.	5	
	17.	ΓL1627SF031	五月	日生化	ΛT	48.7	48.1	0.	6	~20
	27	ΓL1627SF001	需	氧量	mg/L	40.9	47.4	7.	4	€20
	27	ΓL1627SF001				48.8	42.2	7.	3	
	27	ΓL1627SF002	2			43.9	40.9	3.	5	
	27	ΓL1627SF002	2	_		43.6	41.6	2.	3	
	27	ΓL1627SF003	;			43.4	46.8	3.	8	
	27	ΓL1627SF003			41.2	47.8	7.	4		
	27	ΓL1627SF031	-	•		42.5 46.8		4.	8	
		ΓL1627SF031				48.8	46.6	2.	3	
1		L1627SF001				1.63	1.67	1.	2	
	17.	ΓL1627SF008	3			0.73	0.75	1.	4	
	17	ΓL1627SF013	总	潾(以		0.17	0.16	3.	0	≤ 5
	27	ΓL1627SF001	P	P计)	mg/L	1.60	1.57	0.	9	≪3
	27	ΓL1627SF008	3			0.63	0.66	2.	3	
	27	ΓL1627SF013	3			0.18	0.18	0.	0	
			品准	主确度质	量控制排	设告				
控样	S	K 样日期	检测	项目	単位	质	空检测值		质	控样标准值
00011 110367			化学	雲気 畳	mg/L	282	27	4		275±12
BW80250DW		22 11 01	Lr →	里汗叫	mg/L	45	44	1		46.1±2.3
D0012891 BY400124 B21070101					mg/L	106	11	0		110±12
.00065 040052					无量 纲	7.02	7.0)7		7.04±0.05
采样日期	月	样品编	 号	检测		单位	l l		口	收率合格范围
		1TL1627SI 1TL1627SI 2TL1627SI 2TL1627SI	F008 F013 F001 F008	-1		%	96 98 96 99	1 .2 .0 .8		90~110
1	00011 10367 250DW 12891 00124 070101 00065 040052 采样日期	17 17 17 17 17 17 17 17	TL1627SF001 TL1627SF002 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF001 TTL1627SF001 TTL1627SF002 TTL1627SF002 TTL1627SF003 TTL16	2TL1627SF001 2TL1627SF001 2TL1627SF002 2TL1627SF002 2TL1627SF003 2TL1627SF003 2TL1627SF031 2TL1627SF031 1TL1627SF001 1TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF001 2TL1627SF013 位数	TTL1627SF001	TTL1627SF001 TTL1627SF002 TTL1627SF002 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF002 TTL1627SF002 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF003 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF008 TTL1627SF001 TTL1627SF008 TTL1627SF001 TTL1627SF008 TTL1627SF001 TTL1627SF008 TTL1627SF001 TTL1627SF008 TTL1627SF008 TTL1627SF008 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF001 TTL1627SF008 TTL1627SF001 TTL1627SF008 TTL	TTL1627SF001	TTL1627SF001	TIL1627SF001 TIL1627SF002 TIL1627SF003 TIL1627SF003 TIL1627SF003 TIL1627SF003 TIL1627SF003 TIL1627SF003 TIL1627SF001 TIL1627SF001 TIL1627SF001 TIL1627SF001 TIL1627SF001 TIL1627SF002 TIL1627SF002 TIL1627SF003 TI	TTL1627SF001

1TL1627SF001			99.1	
1TL1627SF014			101	
1TL1627SF015	总氮(以N	0/	98.1	00 110
2TL1627SF001	计)	%	98.0	90~110
2TL1627SF014			98.0	
2TL1627SF015			99.0	
1TL1627SF001			101	
1TL1627SF008			102	
1TL1627SF018			97.1	
1TL1627SF021	氨氮(以N	%	103	00 110
2TL1627SF001	计)	%0	103	90~110
2TL1627SF008			97.1	
2TL1627SF018			103	
2TL1627SF021			97.2	

质量控制参考依据:参考江苏省环境监测中心文件 苏环监测〔2006〕60号 关于印发《江苏省日常环境监测质量控制样采集、分析控制要求》的通知 附表1;总氮参考《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(HJ 636-2012)12.3、12.5的要求。

8.5 气体监测分析过程中的质量保证和质量控制

废气验收监测质量控制与质量保证按照《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T373-2007)、《固定源废气监测技术规范》(HJ/T397-2007)和《大气污染物无组织排放监测技术导则》(HJ/T55-2000)中有关规定执行。尽量避免被测排放物中共存污染物因子对仪器分析的交叉干扰;对采样仪器的流量计、分析仪器定期进行校准。

	分析样		现场平行	样		实	验室平	至行/穿	透	全程序	序空白	标样/校核点	
分析项目	品数	检查数	检查率%	合格 数	合格 率%	检查 数	检查 率%	合格 数	合格 率%	检查数	合格数	检查数	合格 数
低浓度颗 粒物	76	/	/	/	/	/	/	/	/	4	4	/	/
总悬浮颗 粒物	52	/	/	/	/	/	/	/	/	4	4	/	/
氨	30	4	13.3	4	100	/	/	/	/	2	2	1	1
硫化氢	30	4	13.3	4	100	/	/	/	/	2	2	2	2

表8.5-1 废水污染物质控统计表

8.6 噪声监测分析过程中的质量保证和质量控制

为保证厂界噪声监测过程的质量,噪声监测布点、测量方法及频次按照工业企业厂界环境噪声排放标准(GB12348-2008)执行。监测时使用经计量部门检定、并在有效使用期内的声级计;声级计在测试前后用标准发生源(94.0dB)进行校准,测量前后仪器的灵敏度相差不大于0.5dB。

9 验收监测结果

9.1 生产工况

验收监测期间,企业正常生产,工况稳定,各环境保护设施运行正常,验收监测期间工况负荷如下表9.1-1。

设计目产能 t/d* 验收期间实际日产量t 生产负荷% 主要 监测日期 产品 第三阶 第三阶段 全厂 第三阶段 全厂 全厂 段 87.99 2023.11.1 1086.9 2011 87.66 2023.11.2 1123.5 1974 90.95 86.04 2023.11.6 938.3 1826 75.96 79.60 生活 1235.3 2294.1 用纸 2023.11.7 975.6 1832 78.98 79.86 2023.11.29 1136.4 2111 92.00 92.01 85.96 82.99 2023.11.30 1061.8 1904

表9.1-1 负荷说明

注: *本项目第三阶段设计产能为42万t/a,年运行340d,则第三阶段设计日产能为1235.3t/d;全厂设计产能为78万t/a,折2294.1t/d。

	次3.1-2 业权行外床及爬运行	1/1/04/2
监测日期	环保设备	运行状况
2022 11 1	污水处理站*	处理水量: 13600t
2023.11.1	湿式除尘系统(9#-12#、17#~24#)	正常运行
2023.11.2	污水处理站*	处理水量: 14100t
2025.11.2	湿式除尘系统(9#-12#、17#~24#)	正常运行
	污水处理站*	处理水量: 11790t
2023.11.6	湿式除尘系统(9#、11#、12#、17#、	处理风量 17434~75046m³/h
	18#、19#、20#)	
	污水处理站*	处理水量: 12264t
2023.11.7	湿式除尘系统(9#、11#、12#、17#、	17681~75152m ³ /h
	18#、19#、20#)	17001 73132III /II
	污水处理站*	处理水量: 14286t
2023.11.29	湿式除尘系统(10#、21#、22#、	处理风量 24009~26929m³/h
	23#、24#)	人工/√里 2 100/ 20/2/III /II
	污水处理站*	处理水量: 13347t
2023.11.30	湿式除尘系统(10#、21#、22#、	处理风量 23626~26780m³/h
	23#、24#)	

表9.1-2 验收各环保设施运行状况表

注:*由于本次第三阶段验收3#、5#、6#、7#车间生产废水与第一、第二阶段已验收的1#、2#、4#车间生产废水合并排入厂区北侧的污水站处理,故本次验收对验收期间污水站接纳的全厂废水水量进行统计。

9.2 环保设施调试运行效果

9.2.1环保设施处理效率监测结果

9.2.1.1废水治理设施

本项目第三阶段废水主要为造纸单元产生的废水和生活污水,造纸单元产生的废水和生活污水经架空管道传输至污水处理站,污水处理站处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海。

9.2.1.2废气治理设施

本项目第三阶段卷取工序产生的废气,已在造纸机上方设置集气罩,废气经管道收集后分别进入12套湿式除尘系统(每台造纸机对应1套湿式除尘系统),分别经12根23m高排气筒(9#-12#、17#~24#)排放。

本项目第三阶段卷取工序未被收集的粉尘、污水处理站污水及污泥处理的过程中产生的少量氨、硫化氢等臭气,以无组织形式排放,通过加强生产管理减小无组织废气对环境的影响。

9.2.1.3噪声治理设施

本项目第三阶段噪声源主要为水力碎浆机、造纸机等,公司采取厂房 隔声、距离衰减等综合措施来降低噪声对周围环境的影响,确保厂界噪声 达标排放。

9.2.1.4固体废物

项目第三阶段产生的固体废物有废浆渣、废纸卷缠绕包装膜、废纸芯管、污水站污泥、废机油、废机油桶以及职工生活垃圾。其中污水站污泥 经鉴别为一般固废,按照一般固废委托处置;废浆渣、废纸卷缠绕包装膜、废纸芯管一并外售综合利用;废机油、废机油桶为危险废物,委托有资质单位处置;职工生活垃圾由环卫定期清运。各项固废均得到有效处置,排

放量为零。

9.3污染物排放监测结果

9.3.1废水

根据江苏添蓝检测技术服务有限公司出具的检测报告(报告编号: TLJC20231627)以及江苏格林勒斯检测科技有限公司出具的检测报告(报告编号: GE2311022602C、GE2311022601B),本项目废水监测结果见下表。

表 9.3-1 废水监测结果汇总表

							监测结果				
监测点 位	采样时间	及频次	pH值	SS (mg/L)	化学需氧量 (mg/L)	氨氮(mg/L)	总磷 (mg/L)	五日生化 需氧量 (mg/L)	总氮 (mg/L)	AOX (mg/L)	二噁英 (pgTEQ/L)
		第一次	8.4	11	237	15.2	1.65	43.6	21.1	0.219	1.7
★ >¬ ₩	2023.11.1	第二次	8.5	14	228	16.8	1.61	45.6	24.0	0.246	2.4
车间排 口S0	2023.11.1	第三次	8.4	13	226	17.8	1.52	46.9	27.8	0.245	1.6
		第四次	8.5	11	220	16.4	1.57	478	25.7	0.266	1.8
	均值或	范围	8.4~8.5	12.25	227.75	16.55	1.5875	153.525	24.65	0.244	1.875
	评价标准		/	/	/	/	/	/	/	12	30
	计训物性	第一次	8.2	70	430	16.3	0.74	170	20.5	/	/
NET-H-NI	2022 11 1	第二次	8.3	65	506	19.0	0.64	186	22.2	/	/
调节池 S 1	2023.11.1	第三次	8.3	61	472	17.8	0.58	162	22.6	/	/
51		第四次	8.2	71	488	17.4	0.69	193	22.4	/	/
	均值或	范围	8.2~8.3	66.75	474	17.625	0.6625	177.75	21.925	/	/
		第一次	8.2	22	365	/	/	64.9	/	/	/
斜网S2	2023.11.1	第二次	8.0	25	393	/	/	65.5	/	/	/
赤17432	2025.11.1	第三次	8.1	23	372	/	/	65.1	/	/	/
		第四次	8.1	28	380	/	/	66.0	/	/	/

	均值或	范围	8.0~8.2	24.5	377.5	/	/	65.375	/	/	/
		第一次	8.0	14	281	/	/	45.9	/	/	/
前混凝	2022 11 1	第二次	7.9	13	272	/	/	46.7	/	/	/
池、初	2023.11.1	第三次	8.1	14	258	/	/	49.8	/	/	/
沉池S3		第四次	8.1	12	252	/	/	47.4	/	/	/
	均值或	范围	7.9~8.1	13.25	265.75	/	/	47.45	/	/	/
环评预信 理单元处	理效率%	2023.11.1	/	88.3	62.9	/	/	47.4	/	/	/
验收监测理单元处	則物埋处	2023.11.1	/	80.1	43.9	/	/	73.3	/	/	/
		第一次	8.1	27	68	5.39	0.16	22.9	10.0	/	/
	2023.11.1	第二次	8.2	29	72	5.44	0.16	23.2	10.8	/	/
A/O池S4	2023.11.1	第三次	8.2	28	74	5.97	0.18	25.8	10.6	/	/
		第四次	8.1	22	65	6.20	0.20	21.2	14.8	/	/
	均值或	范围	8.1~8.2	26.5	69.75	5.75	0.175	23.275	11.55	/	/
		第一次	8.0	6	60	5.36	0.08	17.0	7.06	/	/
. >=>=	2023.11.1	第二次	7.9	7	59	5.68	0.08	19.4	7.79	/	/
二沉池 S5	2023.11.1	第三次	7.9	9	50	5.79	0.09	17.8	7.54	/	/
53		第四次	8.0	8	52	4.66	0.09	19.5	7.69	/	/
	均值或	范围	7.9~8.0	7.5	55.25	5.372	0.085	18.425	7.52	/	/
		第一次	7.9	6	55	4.98	0.06	18.0	6.04	/	/
	2022 11 1	第二次	7.8	9	52	4.92	0.07	17.0	6.28	/	/
三沉池 S 6	2023.11.1	第三次	7.8	7	60	4.40	0.07	18.5	6.91	/	/
		第四次	8.0	8	57	4.23	0.06	19.8	6.43	/	/
	均值或	范围	7.8~8.0	7.5	56	4.632	0.065	18.325	6.415	/	/
放流池	2023.11.1	第一次	7.9	7	27	0.564	0.03	9.0	0.92	0.110	/

S7		第二次	7.7	6	28	0.549	0.03	9.2	0.99	0.119	/
		第三次	7.8	6	25	0.535	0.05	9.0	0.94	0.124	/
		第四次	7.7	8	26	0.520	0.04	9.0	0.98	0.108	/
	均值	或范围	7.7~7.9	6.75	26.5	0.52	0.04	9	0.98	0.115	/
	评价标准	隹	6-9	10	50	5	0.5	10	12	/	/
	达标情况	兄	达标	达标	达标	达标	达标	达标	达标	达标	达标
	古生化处 理效率%	2023.11.1	/	95.0	94.0	79.3	88.1	95.5	84.7	33.3	/
	则生化处 建效率%	2023.11.1	/	49.1	90.0	96.9	94.3	80.9	95.6	52.7	/
	古污水站 效率%	2023.11.1	/	99.4	97.8	79.2	88.1	97.6	84.7	33.3	/
	则污水站 效率%	2023.11.1	/	89.9	94.4	96.9	94.3	94.9	95.6	52.7	/
		第一次	8.2	10	232	16.7	1.58	44.8	23.8	0.263	1.3
# III HI	2023.11.0	第二次	8.3	13	226	17.2	1.53	42.5	26.5	0.238	2.1
车间排 口S0	2023.11.	第三次	8.2	14	228	18.1	1.55	44.8	27.5	0.238	1.3
шво		第四次	8.2	12	222	17.9	1.59	44.0	26.9	0.226	1.7
	均值	或范围	8.2~8.3	12.25	227	17.475	1.562	44.025	26.175	0.241	1.6
	评价标准	隹	/	/	/	/	/	/	/	12	30
		第一次	8.0	71	429	17.8	0.64	179	20.1	/	/
	2022 11	第二次	7.9	62	495	19.4	0.84	170	22.4	/	/
调节池 S 1	2023.11.0	第三次	8.0	68	459	19.9	0.84	165	21.8	/	/
31		第四次	7.9	64	492	18.4	0.79	176	22.0	/	/
	均值	或范围	7.9~8.0	66.25	468.75	18.875	0.777	172.5	21.575	/	/
斜圆gg	2022 11	第一次	8.0	22	357	/	/	61.4	/	/	/
斜网S2	2023.11.0	第二次	8.1	28	396	/	/	62.8	/	/	/

		第三次	8.0	21	375	/	/	65.8	/	/	/
		第四次	8.0	24	390	/	/	64.4	/	/	/
	均值或	范围	8.0~8.1	23.75	379.5	/	/	63.6	/	/	/
		第一次	7.7	10	288	/	/	46.2	/	/	/
前混凝	2023.11.6	第二次	7.9	12	280	/	/	44.2	/	/	/
池、初	2023.11.0	第三次	7.8	13	276	/	/	43.6	/	/	/
沉池S3		第四次	7.8	12	258	/	/	47.6	/	/	/
	均值或	范围	7.7~7.9	11.75	275.5	/	/	45.4	/	/	/
环评预价 理单元处	理效率%	2023.11.6	/	88.3	62.9	/	/	47.4	/	/	/
验收监测 理单元处	则物埋处	2023.11.0	/	82.2	41.2	/	/	73.6	/	/	/
		第一次	7.9	25	71	5.74	0.18	22.2	10.0	/	/
	2023.11.6	第二次	7.9	28	74	5.80	0.16	25.1	11.2	/	/
A/O池S4	2023.11.0	第三次	8.0	29	72	5.97	0.20	23.2	12.4	/	/
		第四次	7.9	27	66	6.31	0.19	24.0	14.0	/	/
	均值或	范围	7.9~8.0	27.25	70.75	5.955	0.182	23.625	11.9	/	/
		第一次	7.8	9	58	5.48	0.08	7.06	7.06	/	/
. >=>=1	2023.11.6	第二次	7.9	6	57	5.80	0.09	7.74	7.74	/	/
二沉池 S 5	2025.11.0	第三次	8.0	8	52	5.91	0.08	7.59	7.59	/	/
55		第四次	7.9	6	54	4.80	0.08	7.45	7.45	/	/
	均值或	范围	7.8~8.0	7.25	55.25	5.497	0.082	7.46	7.46	/	/
		第一次	7.7	10	59	5.00	0.06	16.4	6.43	/	/
三沉池	2023.11.6	第二次	7.6	8	56	5.06	0.06	17.6	6.86	/	/
S6	2023.11.0	第三次	7.7	7	63	4.54	0.06	18.5	6.23	/	/
		第四次	7.7	9	54	4.43	0.07	17.9	6.82	/	/

	均值	或范围	7.6~7.7	8.5	58	4.757	0.062	17.6	6.585	/	/
		第一次	7.6	7	26	0.507	0.04	8.2	0.93	0.114	/
>4.>→>.1	2023.11.6	第二次	7.7	6	26	0.593	0.04	8.2	0.92	0.094	/
放流池 S7	2023.11.0	第三次	7.7	7	29	0.579	0.03	8.8	0.97	0.094	/
57		第四次	7.6	6	28	0.550	0.04	8.6	0.95	0.094	/
	均值	或范围	7.6~7.7	6.5	27.25	0.557	0.037	8.45	0.942	0.099	/
	评价标准	Ì	6-9	10	50	5	0.5	10	12	/	/
	达标情况	7	达标	达标	达标	达标	达标	达标	达标	达标	达标
	估生化处 上理效率%	2022 11 6	/	95.0	94.0	79.3	88.1	95.5	84.7	33.3	/
	则生化处 上理效率%	2023.11.6	/	44.6	90.1	97.0	95.1	81.3	95.6	58.9	/
	估污水站 效率%	2022 11 6	/	99.4	97.8	79.2	88.1	97.6	84.7	33.3	/
	则污水站 效率%	2023.11.6	/	90.1	94.1	97.0	95.1	95.1	95.6	58.9	/
污力	验收监测其 k站综合处理		/	90.0	94.2	96.9	94.7	95.0	95.6	55.8	/

表 9.3-2 废水去除效率汇总一览表

项目		E处理效率%(处题 77沉+A/O+二沉)	理工艺:调	斜网过滤+调节	2元处理效率%(タ 5+前混凝+初沉+ A +三沉+滤布过滤	/O+二沉+	公司自测数据中各单元处理效率%(处理工艺:斜网过滤+调节+前混凝+初沉+A/O+ 二沉+后混凝+三沉+滤布过滤)			
	物理处理单元	生化处理单元	污水站	物理处理单元	生化处理单元	污水站	物理处理单元	生化处理单元	污水站	
SS	88.3	88.3 95.0 99.4			44.6~49.1	89.9~90.1	60.8	92.9	97.2	
COD	62.9	94.0	97.8	41.2~43.9	90.0~90.1	94.1~94.4	62.9	84.2	94.1	
氨氮	/	79.3	79.2	/	96.9~97.0	96.9~97.0	/	84.4	84.4	
总磷	/	88.1	88.1	/	94.3~95.1	94.3~95.1	/	85.7	85.7	

金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目(第三阶段)竣工环境保护验收监测报告

BOD ₅	47.4	95.5	97.6	73.3~73.6	80.9~81.3	94.9~95.1	55.8	96.3	98.3
总氮	/	84.7	84.7	/	95.6	95.6	/	94.5	94.5
AOX	/	33.3	33.3	/	52.7~58.9	52.7~58.9	/	/	/

通过对污水站的各工序对污染物的处理效率计算可知,污水站对废水 SS、COD、BOD₅ 的去除效率略低于环评设计去除效率,经分析可知原环评废水中 SS、COD、BOD₅ 设计产生浓度分别为 599.38mg/L、1195.97mg/L、418.84mg/L,取值远远大于废水实际污染物产生浓度。

验收监测期间污水站对废水中氨氮、总氮、总磷的去除效率均高于原环评设计值,经过分析可知原环评废水中氨氮、总磷、总氮的设计产生浓度分别为 5.06mg/L、1.01mg/L、10.07mg/L,实际污水站废水中氨氮、总磷、总氮产生浓度分别约为 17mg/L、1.6mg/L、25mg/L,环评中上述污染物预估产生浓度远远小于废水实际污染物产生浓度。同时企业在污水站实际运行过程中采取增加缺氧工序时间等措施,可有效提高污水站的脱氮除磷的能力。

验收监测期间,天气为晴,故未对雨水进行监测。

9.3.2废气

(1) 有组织废气

根据江苏添蓝检测技术服务有限公司出具的检测报告(报告编号: TLJC20231627),本项目第三阶段有组织废气监测结果见下表。

表9.3-3 有组织废气监测结果汇总表(9#排气筒)

	采样时间及频次		+ +		监测结果	
监测			废气	颗粒物		
点位	不作的问	<i>汉沙</i> 州代	流量 (Nm³/h)	排放浓度	排放速率	年运行时
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)
	第一次			1.8	0.136	
	2023.11.6	第二次	75046	1.5	0.112	1
卷取工序		第三次		1.5	0.112	
9#排气筒		第一次		1.5	0.113	340d×24h=
	2023.11.7	第二次	75152	1.5	0.112	8160h
	第三			1.5	0.113	
	评价标准			20	1.0	
	达标情况			达标	达标	

表9.3-4 有组织废气监测结果汇总表(10#排气筒)

	采样时间及频次				监测结果	
监测			废气	颗粒物		
点位	不件的问:	<i>汉沙</i> 州代	流量 (Nm³/h)	排放浓度	排放速率	年运行时
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)
	Ė			2.8	0.074	
老面子房	2023.11.29	第二次	26929	2.3	0.063	340d×24h= 8160h
卷取工序 10#排气		第三次		2.6	0.071	
筒		第一次		3.1	0.082	
]HJ	2023.11.30	第二次	26780	2.2	0.059	
				2.5	0.068	
	评价标准			20	1.0	
	达标情况			达标	达标	

表9.3-5 有组织废气监测结果汇总表(11#排气筒)

	可补叶卢五阳孙		+ -	监测结果			
监测			废气		颗粒物		
点位	点位 采样时间及	<i>汉沙</i> 贝代	流量 (Nm³/h)	排放浓度 (mg/m³)	排放速率 (kg/h)	年运行时 间(h)	
半面工序		第一次		1.5	0.050		
卷取工序 11#排气	2023.11.6	第二次	34005	1.8	0.062	340d×24h=	
11#7# \ 筒		第三次		1.6	0.056	8160h	
IH	2023.11.7	第一次	32210	1.6	0.051		

第二次	2.0	0.065
第三次	1.8	0.058
评价标准	20	1.0
达标情况	达标	达标

表9.3-6有组织废气监测结果汇总表(12#排气筒)

					监测结果	
监测	 采样时间	74. 4. 5. 7. 7.	废气		颗粒物	
点位	木件的 印	<i>汉则</i>	流量 (Nm³/h)	排放浓度	排放速率	年运行时
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)
	第一次			1.9	0.059	
光四十六	2023.11.6	第二次	31170	1.8	0.056	
卷取工序 12#排气		第三次		1.7	0.053	
第 12#7# C		第一次		1.7	0.051	340d×24h=
IH)	2023.11.7	第二次	30316	1.9	0.058	8160h
	第			1.5	0.045	
	评价标准			20	1.0	
	达标情况			达标	达标	

表9.3-7 有组织废气监测结果汇总表(17#排气筒)

UE 254			废气	监测结果			
监测 采样时 点位		及频次	流量 (Nm³/h)	排放浓度 (mg/m³)	颗粒物 排放速率 (kg/h)	年运行时 间(h)	
				1.9	0.033		
光中工片	2023.11.6	第二次	17434	1.6	0.028	340d×24h= 8160h	
卷取工序 17#排气		第三次		1.8	0.031		
1/#排气 筒		第一次	17681	2.0	0.036		
III]	2023.11.7	第二次		2.1	0.037		
		第三次		1.6	0.028		
评价标准			20	1.0			
	达标情况			达标	达标		

表9.3-8 有组织废气监测结果汇总表(18#排气筒)

			废气	监测结果			
监测	立民中间	平样时间及频次 		颗粒物			
点位	不作的问	<i>汉沙</i> 州代	流量 (Nm³/h)	排放浓度	排放速率	年运行时	
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)	
		第一次	20194	1.5	0.029		
光面工序	2023.11.6	第二次		1.9	0.039		
卷取工序 18#排气		第三次		2.2	0.045	340d×24h=	
	筒 2023.11.7	第一次	20574	1.5	0.030	8160h	
117)		第二次		2.0	0.042	-	
		第三次		1.7	0.036		

评价标准	20	1.0
达标情况	达标	达标

表9.3-9有组织废气监测结果汇总表(19#排气筒)

	采样时间及频次		DE C		监测结果	
监测			废气	颗粒物		
点位	不件时间	<i>汉沙</i> 州代	流量 (Nm³/h)	排放浓度	排放速率	年运行时
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)
	Ė			1.6	0.060	
光	2023.11.6	第二次	36801	2.0	0.074	
卷取工序 19#排气		第三次		1.9	0.068	
筒		第一次		1.8	0.065	340d×24h=
]HJ	2023.11.7	第二次	36650	1.7	0.063	8160h
	第三次		1.8	0.066		
	评价标准			20	1.0	
	达标情况			达标	达标	

表9.3-10 有组织废气监测结果汇总表(20#排气筒)

	采样时间及频次		亦与		监测结果	
监测			废气		颗粒物	
点位	不件时间	<i>汉沙</i> 州代	流量 (Nm³/h)	排放浓度	排放速率	年运行时
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)
	第一			1.8	0.078	
光四十六	2023.11.6	第二次	43793	2.0	0.088	
卷取工序 20#排气		第三次		1.6	0.071	
第 第		第一次		1.6	0.071	340d×24h=
l+1)	2023.11.7	第二次	44086	2.0	0.089	8160h
		第三次		1.9	0.082	
	评价标准			20	1.0	
	达标情况			达标	达标	

表9.3-11 有组织废气监测结果汇总表(21#排气筒)

					监测结果		
监测	 采样时间及频次		废气	颗粒物			
点位	木件的 印	<i>汉则</i> 代	流量 (Nm³/h)	排放浓度	排放速率	年运行时	
			(14111 /11)	(mg/m^3)	(kg/h)	间 (h)	
	第一次			3.2	0.081		
老面子房	2023.11.29	第二次	25187	2.6	0.066		
卷取工序 21#排气		第三次		3.5	0.086		
Z1#7# \ 		第一次		2.6	0.061	340d×24h=	
IH)	2023.11.30	第二次	23626	2.8	0.066	8160h	
				2.6	0.063		
	评价标准			20	1.0		
	达标情况			达标	达标		

表9.3-12 有组织废气监测结果汇总表(22#排气筒)

	采样时间及频次		废气	监测结果			
监测				颗粒物			
点位			流量 (Nm³/h)	排放浓度	排放速率	年运行时	
			(11111711)	(mg/m^3)	(kg/h)	间 (h)	
				3.5	0.086		
光丽工片	2023.11.29	第二次	24760	3.0	0.074		
卷取工序 22#排气		第三次		2.6	0.065		
<i>22</i> #1# (筒		第一次		2.5	0.061	340d×24h=	
lrí)	2023.11.30	第二次	24066	3.1	0.074	8160h	
		第三次		3.5	0.083		
评价标准			20	1.0			
	达标情况			达标	达标		

表9.3-13 有组织废气监测结果汇总表(23#排气筒)

	*									
				监测结果						
监测	 采样时间及频次		废气	颗粒物						
点位	木件的 印	<i>汉则</i> 代	流量 (Nm³/h)	排放浓度	排放速率	年运行时				
			(11111 /11)	(mg/m^3)	(kg/h)	间 (h)				
		第一次		2.4	0.059					
半	2023.11.29	第二次	24353	3.3	0.082					
卷取工序 23#排气		第三次		2.9	0.069					
台 筒		第一次		2.7	0.067	340d×24h=				
l+1	2023.11.30	第二次	24675	2.6	0.063	8160h				
		第三次		2.6	0.065					
	评价标准			20	1.0					
	达标情	况		达标	达标					

表9.3-14 有组织废气监测结果汇总表(24#排气筒)

	1000	- 11 2227	1///	がおれた心へ	(= 111 d)-4 >					
				监测结果						
监测	采样时间及频次		废气		颗粒物					
点位			流量 (Nm³/h)	排放浓度	排放速率	年运行时				
			(18111 /11)	(mg/m^3)	(kg/h)	间 (h)				
		第一次		2.9	0.070					
光丽工片	2023.11.29	第二次	24009	2.6	0.062					
卷取工序 24#排气		第三次		3.3	0.079					
24#排气 筒		第一次		2.7	0.066	340d×24h=				
l+1	2023.11.30	第二次	24192	3.5	0.084	8160h				
		第三次		2.8	0.067					
评价标准				20	1.0					
	达标情	况		达标	达标					

(2) 无组织废气

根据江苏添蓝检测技术服务有限公司出具的检测报告(报告编号: TLJC20231627),本项目无组织废气监测结果见下表。

表9.3-15 无组织废气监测结果汇总表

				• • • • • • • • • • • • • • • • • • • •	15 /42		则结果	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	\ 			
监测	3	采样时间	77, 1	插炉			度mg/m	3		最大值	评价	达标		
因子	/	八十 四 回	汉!	火火	上风向	下风向	下风向	て回っ	句G4	mg/m^3	标准 mg/m³	情况		
					G1	G2	G3	1,7/(1	HJ U 4		IIIg/III			
				5一次	0.173	0.260	0.244	0.3	15					
总悬	20	23.11.1	芽	三次	0.177	0.210	0.259	0.2	75	0.315				
恣意 浮颗			_	三次	0.180	0.229	0.252	0.2	79		0.5	达标		
粒物				5一次	0.185	0.239	0.264	0.2	82		0.5	2.7/1		
	20	-		三次	0.181	0.304	0.275	0.2	20	0.304				
				三次	0.173	0.274	0.240	0.2	97					
				5一次	0.09	0.12	0.23	0.1	19					
	20	2023.11.1		三次	0.10	0.15	0.25	0.2	20	0.25				
氨气			芽	三次	0.07	0.10	0.22	0.1	15		1.5	达标		
X ((芽	5一次	0.08	0.11	0.22	0.1	18		1.5	- 込怀		
	20	2023.11.2		三次	0.09	0.12	0.23	0.1	16	0.23				
			芽	三次	0.11	0.13	0.23	0.2	20					
		2023.11.1		第一次			0.002	0.004	0.008	0.0	06			
	20			写二次	0.003	0.005	0.009	0.0	07	0.009				
硫化				三次	0.002	0.004	0.008	0.0	06		0.06	达标		
氢		2023.11.2		5一次	0.003	0.005	0.009	0.007			0.00	27/1		
	20			三次	0.002	0.004	0.008	0.006		0.009				
			芽	三次	0.003 0.005 0.0		0.009	0.0	07		1			
监测国	大		1.24.E	• 1. 2 	トエッム	! !	监测结果		最大值 mg/m³		评价	达标		
子	·	米	(秤)	时间及		排放	效浓度mg/m³				标准 mg/m³	情况		
					5一次		0.269							
颗粒物	勿	2023.11	.1		三次		0.327		().327				
(3#±					三次		0.254				0.5	达标		
纸车间					一次		0.282							
外G5])	2023.11	.2		三次		0.297		().297				
					三次		0.239							
					一次		0.273							
颗粒物		2023.11	.1		三次		0.286		().293				
(5#±)	_				三次		0.293				0.5	达标		
纸车间					一次		0.250					<u> </u>		
外 G 6))	2023.11	.2		三次		0.290		().290				
				第	三次		0.277							

		第一次	0.290				
颗粒物	2023.11.1	第二次	0.268	0.290		ļ 	
(6#造 纸车间		第三次	0.282		0.5	;+- +-	
		第一次	0.232			达标	
外G7)	2023.11.2	第二次	0.285	0.285			
		第三次	0.267				
		第一次	0.303				
颗粒物	2023.11.1	第二次	0.271	0.311			
(7#造		第三次	0.311		0.5	达标	
纸车间		第一次	0.315		0.5		
外G8)	2023.11.2	第二次	0.286	0.315			
		第三次	0.270				

表9.3-16 气象参数表

检测时间		气温 (℃)	气压 (kPa)	风速(m/s)	风向	天气	
月	日		()E (KPa))^([H]	八(
11	1	17.4~27.7	101.7~102.0	1.4~2.3	西风	多云	
11	2	19.0~27.0	101.7~101.9	1.4~2.5	南风	多云	

9.3.3厂界噪声

根据江苏添蓝检测技术服务有限公司出具的检测报告(报告编号: TLJC20231627),本项目噪声监测结果见下表。

表9.3-17 噪声监测结果与评价

	ACAC IT AND MINISTER STORY									
测上炉口	11大河山上 12-	11大、河口中上 757	监测	结果	限值	是否				
测点编号	监测点位	监测时间	dB ((A)	dB (A)	达标				
			昼间	57	65	达标				
N1	纸厂厂界东侧		夜间	50	55	达标				
			昼间	55	65	达标				
N2	纸厂厂界南侧		夜间	46	55	达标				
NO	加口口用亚伽		昼间	59	65	达标				
N3	纸厂厂界西侧		夜间	51	55	达标				
N4	纸厂厂界北侧		昼间	61	65	达标				
194	4以 / 36月11例	2023.11.1	夜间	52	55	达标				
N5	 水厂厂界东侧	2023.11.1	昼间	62	65	达标				
NJ	/ / / / / / / / / / / / / / / / / / /		夜间	53	55	达标				
N6	 水厂厂界南侧		昼间	59	65	达标				
INO	(A) / 外角侧		夜间	50	55	达标				
N7	 水厂厂界西侧		昼间	58	65	达标				
1 1 /	八八 / 分下四项		夜间	49	55	达标				
N8	 水厂厂界北侧		昼间	61	65	达标				
INO	カベア ア タトコロ 灰り		夜间	50	55	达标				
N1	 纸厂厂界东侧		昼间	58	65	达标				
INI	(人) カドカト 関		夜间	47	55	达标				
N2	 纸厂厂界南侧		昼间	60	65	达标				
112	(A) / 列門 网		夜间	49	55	达标				
N3	 纸厂厂界西侧		昼间	62	65	达标				
113	5人// 2000		夜间	50	55	达标				
N4	 纸厂厂界北侧		昼间	61	65	达标				
114	(1) (1) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2023.11.2	夜间	51	55	达标				
N5	水厂厂界东侧	2025.11.2	昼间	62	65	达标				
113	/ハ/ / グド/ハ 吹り		夜间	50	55	达标				
N6	水厂厂界南侧		昼间	59	65	达标				
110	/ハ/ / か門側		夜间	48	55	达标				
N7	水厂厂界西侧		昼间	60	65	达标				
11/	/N/ / グドビゴ [V]		夜间	52	55	达标				
N8	水厂厂界北侧		昼间	61	65	达标				
110	/ハ/ / グトオロ次引		夜间	51	55	达标				

N1	纸厂厂界东侧		昼间	58	65	达标
INI	41.7 介示则		夜间	51	55	达标
N2	(大型) 我们们,我有侧。		昼间	58	65	达标
11/2	(4) / 介質関		夜间	49	55	达标
N3	(大型) 我一一界西侧		昼间	62	65	达标
1N3	(人) (人) (人)		夜间	52	55	达标
N4	(大学) 我们们是一个"我们"。 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		昼间	61	65	达标
194	4以 <i> 分</i> 下4位例 	2023.11.7	夜间	50	55	达标
N5	水厂厂界东侧		昼间	61	65	达标
IN3			夜间	52	55	达标
N6	水厂厂界南侧		昼间	58	65	达标
INO	八月月76萬関		夜间	49	55	达标
N/7	水厂厂界西侧		昼间	61	65	达标
N7			夜间	52	55	达标
N8	水厂厂界北侧		昼间	59	65	达标
110	/N/ / グトオロ7例		夜间	50	55	达标

9.4污染物排放总量核算

验收监测期间,废水污染物排放总量根据监测结果(即平均排放浓度)与年排放水量计算;废气污染物排放总量根据监测结果(即平均排放速率)与年排放时间计算。污染物排放总量控制考核情况见下表。本项目废气污染物、废水污染物排放总量核算,见表9.4-1、表9.4-2、表9.4-3。

	· · · · · · · · · · · · · · · · · · ·		** ** *	
排气筒编号	污染物名称	排放速率平均值 (kg/h)	运行时间h*	总量小计 (t/a)
9#排气筒	颗粒物	0.116	8160	0.9466
10#排气筒	颗粒物	0.070	8160	0.5712
11#排气筒	颗粒物	0.057	8160	0.4651
12#排气筒	颗粒物	0.054	8160	0.4406
17#排气筒	颗粒物	0.032	8160	0.2611
18#排气筒	颗粒物	0.037	8160	0.3019
19#排气筒	颗粒物	0.066	8160	0.5386
20#排气筒	颗粒物	0.080	8160	0.6528
21#排气筒	颗粒物	0.071	8160	0.5794
22#排气筒	颗粒物	0.074	8160	0.6038
23#排气筒	颗粒物	0.068	8160	0.5549
24#排气筒	颗粒物	0.071	8160	0.5794
合计	颗粒物	/	/	6.4954

表 9.4-1 项目废气污染物排放总量核算

注:*根据对实际生产线的产能调查可知,本次验收由环评中7条年产6万吨生产线变为2条6万吨生产线、10条3万吨生产线,产能未发生变化,生产时间未发生变化,故各排气筒废气排放时间仍与环评一致,为8160h/a。根据计算,环评中单根排气筒排放风量为70000m³/h(合计490000m³/h),实际生产过程中排气筒风量为20000m³/h~75000m³/h不等(合计约410000m³/h),实际废气排放风量小于环评设计风量,故废气排气筒排放时间为8160h/a,不会导致废气排放量增加。

	13	4-2 次日及小门	朱初州从心里彻身	*	
污水排口	污染物名称	排放浓度平均值	第三阶段建成后	第三阶段建成后全	
编号	打架物石物	(mg/L)	全厂排放量m³/a	厂总量小计(t/a)	
	废水量m³/a	/		/	
	COD	26.87		141.8752	
	SS	6.625		34.9803	
	氨氮	0.538		2.8406	
放流池S7	总磷	0.038	5280058	0.2006	
	BOD_5	8.725		46.0685	
	总氮	0.961		5.0741	
	AOX	0.107		0.5649	
	二噁英	1.73pgTEQ/L		9.13×10 ⁻⁹	

表9.4-2 项目废水污染物排放总量核算

表9.4-3 污染物排放总量控制考核情况表

种类	污染物名称	第三阶段建成后全厂总 量控制指标(t/a)	第三阶段建成后全厂 实际排放量(t/a)	是否 符合 要求
废气	颗粒物	46.93(第三阶段)	6.4954(第三阶段)	符合
	废水量m³/a	5280058	5280058	符合
	COD	163.6720	141.8752	符合
	SS	36.9582	34.9803	符合
	氨氮	5.5397	2.8406	符合
废水	总磷	0.6299	0.2006	符合
	BOD ₅	52.7974	46.0685	符合
	总氮	6.0697	5.0741	符合
	AOX	0.8399	0.5649	符合
	二噁英	1.79×10 ⁻⁸	9.13×10 ⁻⁹	符合

10 验收监测结论

10.1 环保设施调试运行效果

10.1.1环保设施处理效率监测结果

(1) 废水治理设施

本项目废水主要为造纸单元产生的废水和生活污水,造纸单元产生的废水和生活污水经架空管道传输至污水处理站,污水处理站处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海。

(2) 废气治理设施

本项目卷取工序产生的废气,已在造纸机上方设置集气罩,废气经管 道收集后分别进入12套湿式除尘系统(每台造纸机对应1套湿式除尘系统),分别经12根23m高排气筒(9#~12#、17#~24#)排放。

本项目卷取工序未被收集的粉尘、污水处理站污水及污泥处理的过程 中产生的少量氨、硫化氢等臭气,以无组织形式排放,通过加强生产管理 减小无组织废气对环境的影响。

(3) 厂界噪声治理设施

本项目噪声源主要为水力碎浆机、造纸机等,公司采取厂房隔声、距离衰减等综合措施来降低噪声对周围环境的影响,确保厂界噪声达标排放。

(4) 固体废物

本项目第三阶段建成后产生的固体废物主要为废浆渣、废纸卷缠绕包装膜、废纸芯管、污水站污泥、废机油、废机油桶以及职工生活垃圾。其中污泥经鉴别为一般固废(鉴别报告详见附件7),按照一般固废委托处置;废浆渣、废纸卷缠绕包装膜、废纸芯管统一收集后出售;废机油、废机油桶委托有资质的单位处置;生活垃圾由环卫部门定期清运。各项固废均得到有效处置,排放量为零。

10.1.2污染物排放监测结果

(1) 废水:

本项目废水主要为废水主要为造纸单元产生的废水和生活污水,经架空管道传输至污水处理站,污水处理站处理达到洋口港经济开发区污水处理厂排放标准后依托洋口港经济开发区污水处理厂排海管道排海。根据监测结果:本项目污水排口化学需氧量、悬浮物、氨氮、总磷、五日生化需氧量排放浓度以及pH值范围均符合《城镇污水处理厂污染物排放标准》(GB18918-2002)表1一级A标准,其中二噁英、AOX、总氮排放浓度符合《制浆造纸工业水污染物排放标准》(GB3544-2008)表2"造纸企业"水污染物排放限值要求。

项目第三阶段建成后全厂实际具有年产78万吨生活用纸的能力,废水排放量为5279801t/a,则单位产品基准排水量为6.77t/t,满足《制浆造纸工业水污染物排放标准》(GB3544-2008)中20t/t的标准限值。

(2) 废气:

本项目9#~12#、17#~24#排气筒颗粒物排放浓度和排放速率均符合《大气污染物综合排放标准》(DB32/4041-2021)中表1中排放限值要求。

本项目厂区内无组织颗粒物排放浓度符合《大气污染物综合排放标准》(DB32/4041-2021)表3中排放限值要求。

本项目无组织排放的氨、硫化氢排放浓度符合《恶臭污染物排放标准》(GB14554-93)表1标准。

(3) 噪声:

本项目各厂界噪声均符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准。

(4) 固废:

本项目第三阶段产生的固废中污泥经鉴别为一般固废(鉴别报告详见 附件7),按照一般固废委托处置;废浆渣、废纸卷缠绕包装膜、废纸芯管 统一收集后出售;废机油、废机油桶委托有资质的单位处置;生活垃圾由环卫部门定期清运。各项固废均得到有效处置,排放量为零。

(5) 总量控制

经核算,本项目各项污染物指标均符合环评报告书及批复中核定的总 量控制指标要求。

11 建设项目工程竣工环境保护"三同时"验收登记表

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章):金红叶纸业(南通)有限公司 填表人(签字): 项目经办人(签字):

17/1/4		- <u>JE</u> ZE	1 >MTF(113		・スペン	((2E.1):		· M H AL	27/7 (3E								
	项目名称		AI	PP 如东基地年产78	万吨高档生活用	纸项目(第三	三阶段)	项目代	码	2018-	-320623-22-03-570	947	建设地。	#		7年二港经济 工业园区	
	行业类别(分 录)	类管理名			21机制纸及纸板			建设性	质	√∌	所建 □改扩建 □技	术改造	项目/ 心经度	一区中 夏/纬度	中心经度120°21'25.9635" 中心纬度32°24'50.4087"		
	设计生产能力			全厂: 年产787 第三阶段: 年产4	5吨/年高档生活月 2万吨/年高档生/			实际生产	能力		42万吨/年高档生 用纸的生产能力	£	下评单位		江苏环保产业技术研究院股份公 司		究院股份公
	环评文件审批	机关		ţ	口东县行政审批局	=		审批文	:号	东行	审环[2019]70号	环说	Y文件类	型		报告书	
	开工日期				2019年7月			竣工日	期				可证申领	时间		F9月30日首次 年6月20日重新	
建设项目	环保设施设计	单位		南通		艮公司		环保设施施	江单位	南通	泰恩建设工程有 限公司	本工程排	作污许可:	证编号	9132	0623MA1UTBI	DD3H001P
目	验收单位			金红	叶纸业(南通)有隔	艮公司		环保设施监测单位		验收	监测时工	况		75.96~92.00)%		
	投资总概算(万元)			956413			环保投资总概算 (万 元)		所占	比例(%	6)		4.26			
	实际总投资(万元)		80	0000(第三阶段)		实际环保投资 元)	(万	828	8280(第三阶段)		所占比例(%)		1.035		
	废水治理(万	元)		废气治理 (万元)		噪声治理(万元)	固体废物治理	【(万元)			绿化及	生态(万	元)		其他(万 元)	
İ	新增废水处理	设施能力			*	•	•	新增废气处理	设施能力			年平均工作时		村			
	运营单位		运营单位			运营单位社会	☆统一信用代码 码)	(或组织机	构代 91320623MA1 UTBDD3H		验收时间			2023年	三11月1日~2023	年11月30日	
	污染物		原有排 放量(1)	本期工程实际 排放浓度(2)	本期工程允许 排放浓度(3)	本期工程 产生量(4)	本期工程自身 削减量(5)	本期工程实 际排放量(6)			市 排放	文际 文总量 (9)	全厂核的		区域平衡替代削减量(11)	排放增减 量(12)	
	废水												.0058	528.00)58		
	化学需氧量			26.87	31							_	.8752	163.67			
_ \L	氨氮			0.538	1.05								3406	5.539			
污染	石油类																
物排 放达	废气																
版	二氧化硫																
总量	烟尘																
控制	工业粉尘			1.5~3.5	20			6.4954	46.9	3							
(I	氮氧化物																
业建	工业固体废			0.020	0.12								2006	0.520			
设项	与项目有关 的其他特征	总磷 SS	-	0.038 6.625	0.12 7				-				2006 9803	0.629 36.958	_		
目详 填)	污染物	五日生 化需氧 量		8.725	10								0685	52.79			
		总氮		0.961	1.15							5.0	0741	6.069	97		
		AOX		0.17	0.16								5649	0.839			
		二噁英		1.73pgTEQ/L	3.4pgTEQ/L							9.13	×10 ⁻⁹	1.79×1	10-8		
1 1	#	· · · · · · · · · · · ·	4-bn ()	表示减小 2 (12)		(0) (4) (5)	(0) (11) (1)	2 11目出上	마스 그나 뉘누구선	= .	工味/左 床左掛き	4 E. 7	747.4-4-4		II. III /-	k 底 物 排 故 景	万吨/年.

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。3、计量单位:废水排放量——万吨/年;废气排放量——万标立方米/年;工业固体废物排放量——万吨/年;水污染物排放浓度——亳克/升。

附件:

附件1 企业投资项目备案通知书

附件2 营业执照及法人护照

附件3 环评批复

附件4 排污许可证

附件5 项目第一阶段竣工环境保护验收意见

附件6 项目第二阶段竣工环境保护验收意见

附件7 废水处理污泥危险特性鉴别报告

附件8 污泥处置协议及一般固废处置合同

附件9 危废处置合同

附件10 关于金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目环境影响报告书(报批稿)中废水二噁英排放总量重新核定的说明

附件11 验收监测期间工况核查表

附件12 尾水依托排海工程说明

附件13 应急预案备案表

附件14 金红叶纸业(南通)有限公司APP如东基地年产78万吨高档生活用纸项目(第三阶段)一般变动环境影响分析

附件15 验收检测报告